Categories: Mathematics, Physics.

Polar cylindrical coordinates

Polar cylindrical coordinates extend polar coordinates (r,φ)(r, \varphi) to 3D, by describing the location of a point in space using the variables (r,φ,z)(r, \varphi, z). The zz-axis is unchanged from the Cartesian system, hence the name cylindrical.

Cartesian coordinates (x,y,z)(x, y, z) and the cylindrical system (r,φ,z)(r, \varphi, z) are related by:

x=rcosφy=rsinφz=z\begin{aligned} \boxed{ \begin{aligned} x &= r \cos{\varphi} \\ y &= r \sin{\varphi} \\ z &= z \end{aligned} } \end{aligned}

Conversely, a point given in (x,y,z)(x, y, z) can be converted to (r,φ,z)(r, \varphi, z) using these formulae, where atan2\mathtt{atan2} is the 2-argument arctangent, which is needed to handle the signs correctly:

r=x2+y2φ=atan2(y,x)z=z\begin{aligned} \boxed{ \begin{aligned} r &= \sqrt{x^2 + y^2} \\ \varphi &= \mathtt{atan2}(y, x) \\ z &= z \end{aligned} } \end{aligned}

Polar cylindrical coordinates form an orthogonal curvilinear system, whose scale factors hrh_r, hφh_\varphi and hzh_z we need. To get those, we calculate the unnormalized local basis:

hre^r=e^xxr+e^yyr+e^zzr=e^xcosφ+e^ysinφhφe^φ=e^xxφ+e^yyφ+e^zzφ=e^xrsinφ+e^yrcosφhze^z=e^xxz+e^yyz+e^zzz=e^z\begin{aligned} h_r \vu{e}_r &= \vu{e}_x \pdv{x}{r} + \vu{e}_y \pdv{y}{r} + \vu{e}_z \pdv{z}{r} \\ &= \vu{e}_x \cos{\varphi} + \vu{e}_y \sin{\varphi} \\ h_\varphi \vu{e}_\varphi &= \vu{e}_x \pdv{x}{\varphi} + \vu{e}_y \pdv{y}{\varphi} + \vu{e}_z \pdv{z}{\varphi} \\ &= - \vu{e}_x \: r \sin{\varphi} + \vu{e}_y \: r \cos{\varphi} \\ h_z \vu{e}_z &= \vu{e}_x \pdv{x}{z} + \vu{e}_y \pdv{y}{z} + \vu{e}_z \pdv{z}{z} \\ &= \vu{e}_z \end{aligned}

By normalizing the local basis vectors e^r\vu{e}_r, e^φ\vu{e}_\varphi and e^z\vu{e}_z, we arrive at these expressions:

hr=1hφ=rhz=1e^r=e^xcosφ+e^ysinφe^φ=e^xsinφ+e^ycosφe^z=e^z\begin{aligned} \boxed{ \begin{aligned} h_r &= 1 \\ h_\varphi &= r \\ h_z &= 1 \end{aligned} } \qquad\qquad \boxed{ \begin{aligned} \vu{e}_r &= \vu{e}_x \cos{\varphi} + \vu{e}_y \sin{\varphi} \\ \vu{e}_\varphi &= - \vu{e}_x \sin{\varphi} + \vu{e}_y \cos{\varphi} \\ \vu{e}_z &= \vu{e}_z \end{aligned} } \end{aligned}

Thanks to these scale factors, we can easily convert calculus from the Cartesian system using the standard formulae for orthogonal curvilinear coordinates.

Differential elements

For line integrals, the tangent vector element d\dd{\vb{\ell}} for a curve is as follows:

d=e^rdr+e^φrdφ+e^zdz\begin{aligned} \boxed{ \dd{\vb{\ell}} = \vu{e}_r \dd{r} + \: \vu{e}_\varphi \: r \dd{\varphi} + \: \vu{e}_z \dd{z} } \end{aligned}

For surface integrals, the normal vector element dS\dd{\vb{S}} for a surface is given by:

dS=e^rrdφdz+e^φdrdz+e^zrdrdφ\begin{aligned} \boxed{ \dd{\vb{S}} = \vu{e}_r \: r \dd{\varphi} \dd{z} + \: \vu{e}_\varphi \dd{r} \dd{z} + \: \vu{e}_z \: r \dd{r} \dd{\varphi} } \end{aligned}

And for volume integrals, the infinitesimal volume dV\dd{V} takes the following form:

dV=rdrdφdz\begin{aligned} \boxed{ \dd{V} = r \dd{r} \dd{\varphi} \dd{z} } \end{aligned}

Common operations

The basic vector operations (gradient, divergence, curl and Laplacian) are given by:

f=e^rfr+e^φ1rfφ+ezfz\begin{aligned} \boxed{ \nabla f = \vu{e}_r \pdv{f}{r} + \vu{e}_\varphi \frac{1}{r} \pdv{f}{\varphi} + \mathbf{e}_z \pdv{f}{z} } \end{aligned} V=Vrr+Vrr+1rVφφ+Vzz\begin{aligned} \boxed{ \nabla \cdot \vb{V} = \pdv{V_r}{r} + \frac{V_r}{r} + \frac{1}{r} \pdv{V_\varphi}{\varphi} + \pdv{V_z}{z} } \end{aligned} ×V=e^r(1rVzφVφz)+e^φ(VrzVzr)+e^z(Vφr+Vφr1rVrφ)\begin{aligned} \boxed{ \begin{aligned} \nabla \times \vb{V} &= \quad \vu{e}_r \bigg( \frac{1}{r} \pdv{V_z}{\varphi} - \pdv{V_\varphi}{z} \bigg) \\ &\quad\: + \vu{e}_\varphi \bigg( \pdv{V_r}{z} - \pdv{V_z}{r} \bigg) \\ &\quad\: + \vu{e}_z \bigg( \pdv{V_\varphi}{r} + \frac{V_\varphi}{r} - \frac{1}{r} \pdv{V_r}{\varphi} \bigg) \end{aligned} } \end{aligned} 2f=2fr2+1rfr+1r22fφ2+2fz2\begin{aligned} \boxed{ \nabla^2 f = \pdvn{2}{f}{r} + \frac{1}{r} \pdv{f}{r} + \frac{1}{r^2} \pdvn{2}{f}{\varphi} + \pdvn{2}{f}{z} } \end{aligned}

Uncommon operations

Uncommon operations include: the gradient of a divergence (V)\nabla (\nabla \cdot \vb{V}), the gradient of a vector V\nabla \vb{V}, the advection of a vector (U)V(\vb{U} \cdot \nabla) \vb{V} with respect to U\vb{U}, the Laplacian of a vector 2V\nabla^2 \vb{V}, and the divergence of a 2nd-order tensor T\nabla \cdot \overline{\overline{\vb{T}}}:

(V)=e^r(2Vrr2+1r2Vφrφ+2Vzrz+1rVrr1r2VφφVrr2)+e^φ(1r2Vrφr+1r22Vφφ2+1r2Vzφz+1r2Vrφ)+e^z(2Vrzr+1r2Vφzφ+2Vzz2+1rVrz)\begin{aligned} \boxed{ \begin{aligned} \nabla (\nabla \cdot \vb{V}) &= \quad \vu{e}_r \bigg( \pdvn{2}{V_r}{r} + \frac{1}{r} \mpdv{V_\varphi}{r}{\varphi} + \mpdv{V_z}{r}{z} + \frac{1}{r} \pdv{V_r}{r} - \frac{1}{r^2} \pdv{V_\varphi}{\varphi} - \frac{V_r}{r^2} \bigg) \\ &\quad\: + \vu{e}_\varphi \bigg( \frac{1}{r} \mpdv{V_r}{\varphi}{r} + \frac{1}{r^2} \pdvn{2}{V_\varphi}{\varphi} + \frac{1}{r} \mpdv{V_z}{\varphi}{z} + \frac{1}{r^2} \pdv{V_r}{\varphi} \bigg) \\ &\quad\: + \vu{e}_z \bigg( \mpdv{V_r}{z}{r} + \frac{1}{r} \mpdv{V_\varphi}{z}{\varphi} + \pdvn{2}{V_z}{z} + \frac{1}{r} \pdv{V_r}{z} \bigg) \end{aligned} } \end{aligned} V=e^re^rVrr+e^re^φVφr+e^re^zVzr+e^φe^r(1rVrφVφr)+e^φe^φ(1rVφφ+Vrr)+e^φe^z1rVzφ+e^ze^rVrz+e^ze^φVφz+e^ze^zVzz\begin{aligned} \boxed{ \begin{aligned} \nabla \vb{V} &= \quad \vu{e}_r \vu{e}_r \pdv{V_r}{r} + \vu{e}_r \vu{e}_\varphi \pdv{V_\varphi}{r} + \vu{e}_r \vu{e}_z \pdv{V_z}{r} \\ &\quad\: + \vu{e}_\varphi \vu{e}_r \bigg( \frac{1}{r} \pdv{V_r}{\varphi} - \frac{V_\varphi}{r} \bigg) + \vu{e}_\varphi \vu{e}_\varphi \bigg( \frac{1}{r} \pdv{V_\varphi}{\varphi} + \frac{V_r}{r} \bigg) + \vu{e}_\varphi \vu{e}_z \frac{1}{r} \pdv{V_z}{\varphi} \\ &\quad\: + \vu{e}_z \vu{e}_r \pdv{V_r}{z} + \vu{e}_z \vu{e}_\varphi \pdv{V_\varphi}{z} + \vu{e}_z \vu{e}_z \pdv{V_z}{z} \end{aligned} } \end{aligned} (U)V=e^r(UrVrr+UφrVrφ+UzVrzUφVφr)+e^φ(UrVφr+UφrVφφ+UzVφz+UφVrr)+e^z(UrVzr+UφrVzφ+UzVzz)\begin{aligned} \boxed{ \begin{aligned} (\vb{U} \cdot \nabla) \vb{V} &= \quad \vu{e}_r \bigg( U_r \pdv{V_r}{r} + \frac{U_\varphi}{r} \pdv{V_r}{\varphi} + U_z \pdv{V_r}{z} - \frac{U_\varphi V_\varphi}{r} \bigg) \\ &\quad\: + \vu{e}_\varphi \bigg( U_r \pdv{V_\varphi}{r} + \frac{U_\varphi}{r} \pdv{V_\varphi}{\varphi} + U_z \pdv{V_\varphi}{z} + \frac{U_\varphi V_r}{r} \bigg) \\ &\quad\: + \vu{e}_z \bigg( U_r \pdv{V_z}{r} + \frac{U_\varphi}{r} \pdv{V_z}{\varphi} + U_z \pdv{V_z}{z} \bigg) \end{aligned} } \end{aligned} 2V=e^r(2Vrr2+1r22Vrφ2+2Vrz2+1rVrr2r2VφφVrr2)+e^φ(2Vφr2+1r22Vφφ2+2Vφz2+2r2Vrφ+1rVφrVφr2)+e^z(2Vzr2+1r22Vzφ2+2Vzz2+1rVzr)\begin{aligned} \boxed{ \begin{aligned} \nabla^2 \vb{V} &= \quad \vu{e}_r \bigg( \pdvn{2}{V_r}{r} + \frac{1}{r^2} \pdvn{2}{V_r}{\varphi} + \pdvn{2}{V_r}{z} + \frac{1}{r} \pdv{V_r}{r} - \frac{2}{r^2} \pdv{V_\varphi}{\varphi} - \frac{V_r}{r^2} \bigg) \\ &\quad\: + \vu{e}_\varphi \bigg( \pdvn{2}{V_\varphi}{r} + \frac{1}{r^2} \pdvn{2}{V_\varphi}{\varphi} + \pdvn{2}{V_\varphi}{z} + \frac{2}{r^2} \pdv{V_r}{\varphi} + \frac{1}{r} \pdv{V_\varphi}{r} - \frac{V_\varphi}{r^2} \bigg) \\ &\quad\: + \vu{e}_z \bigg( \pdvn{2}{V_z}{r} + \frac{1}{r^2} \pdvn{2}{V_z}{\varphi} + \pdvn{2}{V_z}{z} + \frac{1}{r} \pdv{V_z}{r} \bigg) \end{aligned} } \end{aligned} T=e^r(Trrr+1rTφrφ+Tzrz+TrrrTφφr)+e^φ(Trφr+1rTφφφ+Tzφz+Trφr+Tφrr)+e^z(Trzr+1rTφzφ+Tzzz+Trzr)\begin{aligned} \boxed{ \begin{aligned} \nabla \cdot \overline{\overline{\mathbf{T}}} &= \quad \vu{e}_r \bigg( \pdv{T_{rr}}{r} + \frac{1}{r} \pdv{T_{\varphi r}}{\varphi} + \pdv{T_{zr}}{z} + \frac{T_{rr}}{r} - \frac{T_{\varphi \varphi}}{r} \bigg) \\ &\quad\: + \vu{e}_\varphi \bigg( \pdv{T_{r \varphi}}{r} + \frac{1}{r} \pdv{T_{\varphi \varphi}}{\varphi} + \pdv{T_{z \varphi}}{z} + \frac{T_{r \varphi}}{r} + \frac{T_{\varphi r}}{r} \bigg) \\ &\quad\: + \vu{e}_z \bigg( \pdv{T_{rz}}{r} + \frac{1}{r} \pdv{T_{\varphi z}}{\varphi} + \pdv{T_{zz}}{z} + \frac{T_{rz}}{r} \bigg) \end{aligned} } \end{aligned}

References

  1. M.L. Boas, Mathematical methods in the physical sciences, 2nd edition, Wiley.
  2. B. Lautrup, Physics of continuous matter: exotic and everyday phenomena in the macroscopic world, 2nd edition, CRC Press.