Categories:
Nonlinear optics ,
Optics ,
Perturbation ,
Physics ,
Quantum mechanics .
Multi-photon absorption
Consider a quantum system where there are many eigenstates ∣ n ⟩ \Ket{n} ∣ n ⟩ ,
e.g. atomic orbitals, for an electron to occupy.
Suppose an electromagnetic wave
passes by, such that its Hamiltonian gets perturbed by H ^ 1 \hat{H}_1 H ^ 1 , given in the
electric dipole approximation by:
H ^ 1 ( t ) = − p ^ ⋅ E cos ( ω t ) ≈ − p ^ ⋅ E e − i ω t \begin{aligned}
\hat{H}_1(t)
= -\vu{p} \cdot \vb{E} \cos(\omega t)
\approx -\vu{p} \cdot \vb{E} e^{-i \omega t}
\end{aligned} H ^ 1 ( t ) = − p ^ ⋅ E cos ( ω t ) ≈ − p ^ ⋅ E e − iω t
Where E \vb{E} E is the electric field amplitude,
and p ^ ≡ q x ^ \vu{p} \equiv q \vu{x} p ^ ≡ q x ^ is the transition dipole moment operator.
Here, we have made the
rotating wave approximation
to neglect the e i ω t e^{i \omega t} e iω t term,
because it turns out to be irrelevant in this discussion.
We call the ground state ∣ 0 ⟩ \Ket{0} ∣ 0 ⟩ ,
but other than that, the other states need not be sorted by energy.
However, we demand that the following holds
for all even-numbered states ∣ e ⟩ \Ket{e} ∣ e ⟩ and ∣ e ′ ⟩ \Ket{e'} ∣ e ′ ⟩ ,
and for all odd-numbered (u u u neven) states ∣ u ⟩ \Ket{u} ∣ u ⟩ and ∣ u ′ ⟩ \Ket{u'} ∣ u ′ ⟩ :
⟨ e ∣ H ^ 1 ∣ e ′ ⟩ = ⟨ u ∣ H ^ 1 ∣ u ′ ⟩ = 0 ⟨ e ∣ H ^ 1 ∣ u ⟩ ≠ 0 \begin{aligned}
\matrixel{e}{\hat{H}_1}{e'} = \matrixel{u}{\hat{H}_1}{u'} = 0
\qquad \quad
\matrixel{e}{\hat{H}_1}{u} \neq 0
\end{aligned} ⟨ e ∣ H ^ 1 ∣ e ′ ⟩ = ⟨ u ∣ H ^ 1 ∣ u ′ ⟩ = 0 ⟨ e ∣ H ^ 1 ∣ u ⟩ = 0
This is justified for atomic orbitals thanks to
Laporte’s selection rule .
Therefore, time-dependent perturbation theory
says that the N N N th-order coefficient corrections are:
c e ( N ) ( t ) = − i ℏ ∑ u o d d ∫ 0 t ⟨ e ∣ H ^ 1 ( τ ) ∣ u ⟩ c u ( N − 1 ) ( τ ) e i ω e u τ d τ c u ( N ) ( t ) = − i ℏ ∑ e e v e n ∫ 0 t ⟨ u ∣ H ^ 1 ( τ ) ∣ e ⟩ c e ( N − 1 ) ( τ ) e i ω u e τ d τ \begin{aligned}
c_e^{(N)}(t)
&= -\frac{i}{\hbar} \sum_{u}^{\mathrm{odd}} \int_0^t \matrixel{e}{\hat{H}_1(\tau)}{u} \: c_u^{(N-1)}(\tau) \: e^{i \omega_{eu} \tau} \dd{\tau}
\\
c_u^{(N)}(t)
&= -\frac{i}{\hbar} \sum_{e}^{\mathrm{even}} \int_0^t \matrixel{u}{\hat{H}_1(\tau)}{e} \: c_e^{(N-1)}(\tau) \: e^{i \omega_{ue} \tau} \dd{\tau}
\end{aligned} c e ( N ) ( t ) c u ( N ) ( t ) = − ℏ i u ∑ odd ∫ 0 t ⟨ e ∣ H ^ 1 ( τ ) ∣ u ⟩ c u ( N − 1 ) ( τ ) e i ω e u τ d τ = − ℏ i e ∑ even ∫ 0 t ⟨ u ∣ H ^ 1 ( τ ) ∣ e ⟩ c e ( N − 1 ) ( τ ) e i ω u e τ d τ
Where ω e u = ( E e − E u ) / ℏ \omega_{eu} = (E_e \!-\! E_u) / \hbar ω e u = ( E e − E u ) /ℏ .
For simplicity, the electron starts in the lowest-energy state ∣ 0 ⟩ \Ket{0} ∣ 0 ⟩ :
c 0 ( 0 ) = 1 c u ( 0 ) = c e ≠ 0 ( 0 ) = 0 \begin{aligned}
c_0^{(0)} = 1
\qquad \qquad
c_u^{(0)} = c_{e \neq 0}^{(0)} = 0
\end{aligned} c 0 ( 0 ) = 1 c u ( 0 ) = c e = 0 ( 0 ) = 0
Finally, we prove the following useful relation for large t t t ,
involving a Dirac delta function δ \delta δ :
lim t → ∞ ∣ e i x t − 1 x ∣ 2 = 2 π δ ( x ) t \begin{aligned}
\lim_{t \to \infty} \bigg| \frac{e^{i x t} - 1}{x} \bigg|^2
= 2 \pi \: \delta(x) \: t
\end{aligned} t → ∞ lim x e i x t − 1 2 = 2 π δ ( x ) t
Proof
Proof.
First, observe that we can rewrite the fraction using an integral:
e i x t − 1 x = e i x t / 2 e i x t / 2 − e − i x t / 2 x = i e i x t / 2 ∫ − t / 2 t / 2 e i x τ d τ \begin{aligned}
\frac{e^{i x t} - 1}{x}
= e^{i x t / 2} \frac{e^{i x t / 2} - e^{-i x t / 2}}{x}
= i e^{i x t / 2} \int_{-t/2}^{t/2} e^{i x \tau} \dd{\tau}
\end{aligned} x e i x t − 1 = e i x t /2 x e i x t /2 − e − i x t /2 = i e i x t /2 ∫ − t /2 t /2 e i xτ d τ
By taking the limit t → ∞ t \to \infty t → ∞ ,
it can be turned into a nascent Dirac delta function:
lim t → ∞ e i x t − 1 x = lim t → ∞ i e i x t / 2 2 π 2 π ∫ − ∞ ∞ e i x τ d τ = lim t → ∞ i 2 π e i x t / 2 δ ( x ) \begin{aligned}
\lim_{t \to \infty} \frac{e^{i x t} - 1}{x}
= \lim_{t \to \infty} i e^{i x t / 2} \frac{2 \pi}{2 \pi} \int_{-\infty}^{\infty} e^{i x \tau} \dd{\tau}
= \lim_{t \to \infty} i 2 \pi e^{i x t / 2} \: \delta(x)
\end{aligned} t → ∞ lim x e i x t − 1 = t → ∞ lim i e i x t /2 2 π 2 π ∫ − ∞ ∞ e i xτ d τ = t → ∞ lim i 2 π e i x t /2 δ ( x )
Consequently, the absolute value squared is as follows:
lim t → ∞ ∣ e i x t − 1 x ∣ 2 = 4 π 2 δ 2 ( x ) \begin{aligned}
\lim_{t \to \infty} \bigg| \frac{e^{i x t} - 1}{x} \bigg|^2
= 4 \pi^2 \delta^2(x)
\end{aligned} t → ∞ lim x e i x t − 1 2 = 4 π 2 δ 2 ( x )
However, a squared delta function δ 2 \delta^2 δ 2 is not ideal,
so we take a step back:
δ 2 ( x ) = δ ( x ) lim t → ∞ 1 2 π ∫ − t / 2 t / 2 e i x τ d τ = δ ( x ) lim t → ∞ t 2 π \begin{aligned}
\delta^2(x)
= \delta(x) \lim_{t \to \infty} \frac{1}{2 \pi} \int_{-t/2}^{t/2} e^{i x \tau} \dd{\tau}
= \delta(x) \lim_{t \to \infty} \frac{t}{2 \pi}
\end{aligned} δ 2 ( x ) = δ ( x ) t → ∞ lim 2 π 1 ∫ − t /2 t /2 e i xτ d τ = δ ( x ) t → ∞ lim 2 π t
Where we have set x = 0 x = 0 x = 0 according to the first delta function.
This gives the target:
lim t → ∞ ∣ e i x t − 1 x ∣ 2 = 4 π 2 δ 2 ( x ) = 2 π δ ( x ) t \begin{aligned}
\lim_{t \to \infty} \bigg| \frac{e^{i x t} - 1}{x} \bigg|^2
= 4 \pi^2 \delta^2(x)
= 2 \pi \: \delta(x) \: t
\end{aligned} t → ∞ lim x e i x t − 1 2 = 4 π 2 δ 2 ( x ) = 2 π δ ( x ) t
One-photon absorption
To warm up, we start at first-order perturbation theory.
Thanks to our choice of initial condition,
nothing at all happens to any of the even-numbered states ∣ e ⟩ \Ket{e} ∣ e ⟩ :
c e ( 1 ) ( t ) = − i ℏ ∑ u o d d ∫ 0 t ⟨ e ∣ H ^ 1 ( τ ) ∣ u ⟩ c u ( 0 ) e i ω e u τ d τ = 0 \begin{aligned}
c_e^{(1)}(t)
&= -\frac{i}{\hbar} \sum_{u}^{\mathrm{odd}} \int_0^t \matrixel{e}{\hat{H}_1(\tau)}{u} \: c_u^{(0)} \: e^{i \omega_{eu} \tau} \dd{\tau}
= 0
\end{aligned} c e ( 1 ) ( t ) = − ℏ i u ∑ odd ∫ 0 t ⟨ e ∣ H ^ 1 ( τ ) ∣ u ⟩ c u ( 0 ) e i ω e u τ d τ = 0
While the odd-numbered states ∣ u ⟩ \Ket{u} ∣ u ⟩ have a nonzero correction c u ( 1 ) c_u^{(1)} c u ( 1 ) ,
where p u 0 = ⟨ u ∣ p ^ ∣ 0 ⟩ \vb{p}_{u0} = \matrixel{u}{\vu{p}}{0} p u 0 = ⟨ u ∣ p ^ ∣ 0 ⟩ :
c u ( 1 ) ( t ) = − i ℏ ∫ 0 t ⟨ u ∣ H ^ 1 ( τ ) ∣ 0 ⟩ c 0 ( 0 ) e i ω u 0 τ d τ = i p u 0 ⋅ E ℏ ∫ 0 t e i ( ω u 0 − ω ) τ d τ = i p u 0 ⋅ E ℏ [ e i ( ω u 0 − ω ) τ i ( ω u 0 − ω ) ] 0 t \begin{aligned}
c_u^{(1)}(t)
&= -\frac{i}{\hbar} \int_0^t \matrixel{u}{\hat{H}_1(\tau)}{0} \: c_0^{(0)} \: e^{i \omega_{u0} \tau} \dd{\tau}
\\
&= i \frac{\vb{p}_{u0} \cdot \vb{E}}{\hbar} \int_0^t e^{i (\omega_{u0} - \omega) \tau} \dd{\tau}
\\
&= i \frac{\vb{p}_{u0} \cdot \vb{E}}{\hbar} \bigg[ \frac{e^{i (\omega_{u0} - \omega) \tau}}{i (\omega_{u0} - \omega)} \bigg]_0^t
\end{aligned} c u ( 1 ) ( t ) = − ℏ i ∫ 0 t ⟨ u ∣ H ^ 1 ( τ ) ∣ 0 ⟩ c 0 ( 0 ) e i ω u 0 τ d τ = i ℏ p u 0 ⋅ E ∫ 0 t e i ( ω u 0 − ω ) τ d τ = i ℏ p u 0 ⋅ E [ i ( ω u 0 − ω ) e i ( ω u 0 − ω ) τ ] 0 t
Consequently, the first-order correction
(in the rotating wave approximation) is given by:
c u ( 1 ) ( t ) ≈ p u 0 ⋅ E ℏ e i ( ω u 0 − ω ) t − 1 ω u 0 − ω \begin{aligned}
\boxed{
c_u^{(1)}(t)
\approx \frac{\vb{p}_{u0} \cdot \vb{E}}{\hbar} \frac{e^{i (\omega_{u0} - \omega) t} - 1}{\omega_{u0} - \omega}
}
\end{aligned} c u ( 1 ) ( t ) ≈ ℏ p u 0 ⋅ E ω u 0 − ω e i ( ω u 0 − ω ) t − 1
Since ∣ c u ( 1 ) ( t ) ∣ 2 \big| c_u^{(1)}(t) \big|^2 c u ( 1 ) ( t ) 2 is the probability
of finding the electron in ∣ u ⟩ \Ket{u} ∣ u ⟩ ,
its transition rate R u ( 1 ) ( t ) R_u^{(1)}(t) R u ( 1 ) ( t ) is as follows,
averaged since the beginning t = 0 t = 0 t = 0 :
R u ( 1 ) ( t ) = ∣ c u ( 1 ) ( t ) ∣ 2 t = 1 t ∣ p u 0 ⋅ E ℏ ∣ 2 ⋅ ∣ e i ( ω u 0 − ω ) t − 1 ω u 0 − ω ∣ 2 \begin{aligned}
R_u^{(1)}(t)
= \frac{\big| c_u^{(1)}(t) \big|^2}{t}
= \frac{1}{t} \bigg| \frac{\vb{p}_{u0} \cdot \vb{E}}{\hbar} \bigg|^2
\cdot \bigg| \frac{e^{i (\omega_{u0} - \omega) t} - 1}{\omega_{u0} - \omega} \bigg|^2
\end{aligned} R u ( 1 ) ( t ) = t c u ( 1 ) ( t ) 2 = t 1 ℏ p u 0 ⋅ E 2 ⋅ ω u 0 − ω e i ( ω u 0 − ω ) t − 1 2
For large t → ∞ t \to \infty t → ∞ , we can use the formula we proved earlier
to get Fermi’s golden rule :
R u ( 1 ) = 2 π ∣ p u 0 ⋅ E ℏ ∣ 2 δ ( ω u 0 − ω ) \begin{aligned}
\boxed{
R_u^{(1)}
= 2 \pi \bigg| \frac{\vb{p}_{u0} \cdot \vb{E}}{\hbar} \bigg|^2 \delta(\omega_{u0} - \omega)
}
\end{aligned} R u ( 1 ) = 2 π ℏ p u 0 ⋅ E 2 δ ( ω u 0 − ω )
This well-known formula represents one-photon absorption :
it peaks at ω u 0 = ω \omega_{u0} = \omega ω u 0 = ω , i.e. when one photon ℏ ω \hbar \omega ℏ ω
has the exact energy of the transition ℏ ω u 0 \hbar \omega_{u0} ℏ ω u 0 .
Note that this transition is only possible when ⟨ u ∣ p ^ ∣ 0 ⟩ ≠ 0 \matrixel{u}{\vu{p}}{0} \neq 0 ⟨ u ∣ p ^ ∣ 0 ⟩ = 0 ,
i.e. for any odd-numbered final state ∣ u ⟩ \Ket{u} ∣ u ⟩ .
Two-photon absorption
Next, we go to second-order perturbation theory.
Based on the previous result, this time
all odd-numbered states ∣ u ⟩ \Ket{u} ∣ u ⟩ are unaffected:
c u ( 2 ) ( t ) = − i ℏ ∑ e e v e n ∫ 0 t ⟨ u ∣ H ^ 1 ( τ ) ∣ e ⟩ c e ( 1 ) ( τ ) e i ω u e τ d τ = 0 \begin{aligned}
c_u^{(2)}(t)
&= -\frac{i}{\hbar} \sum_{e}^{\mathrm{even}} \int_0^t \matrixel{u}{\hat{H}_1(\tau)}{e} \: c_e^{(1)}(\tau) \: e^{i \omega_{ue} \tau} \dd{\tau}
= 0
\end{aligned} c u ( 2 ) ( t ) = − ℏ i e ∑ even ∫ 0 t ⟨ u ∣ H ^ 1 ( τ ) ∣ e ⟩ c e ( 1 ) ( τ ) e i ω u e τ d τ = 0
While the even-numbered states ∣ e ⟩ \Ket{e} ∣ e ⟩ have the following correction,
using ω e u + ω u 0 = ω e 0 \omega_{eu} \!+\! \omega_{u0} = \omega_{e0} ω e u + ω u 0 = ω e 0 :
c e ( 2 ) ( t ) = − i ℏ ∑ u o d d ∫ 0 t ⟨ e ∣ H ^ 1 ( τ ) ∣ u ⟩ c u ( 1 ) ( τ ) e i ω e u τ d τ = i ∑ u o d d ( p e u ⋅ E ) ( p u 0 ⋅ E ) ℏ 2 ( ω u 0 − ω ) ∫ 0 t e i ( ω e u + ω u 0 − 2 ω ) τ − e i ( ω e u − ω ) τ d τ = i ∑ u o d d ( p e u ⋅ E ) ( p u 0 ⋅ E ) ℏ 2 ( ω u 0 − ω ) [ e i ( ω e 0 − 2 ω ) τ i ( ω e 0 − 2 ω ) − e i ( ω e u − ω ) τ i ( ω e u − ω ) ] 0 t \begin{aligned}
c_e^{(2)}(t)
&= -\frac{i}{\hbar} \sum_{u}^{\mathrm{odd}} \int_0^t \matrixel{e}{\hat{H}_1(\tau)}{u} \: c_u^{(1)}(\tau) \: e^{i \omega_{eu} \tau} \dd{\tau}
\\
&= i \sum_{u}^{\mathrm{odd}} \frac{(\vb{p}_{eu} \cdot \vb{E}) (\vb{p}_{u0} \cdot \vb{E})}{\hbar^2 (\omega_{u0} - \omega)}
\int_0^t e^{i (\omega_{eu} + \omega_{u0} - 2 \omega) \tau} - e^{i (\omega_{eu} - \omega) \tau} \dd{\tau}
\\
&= i \sum_{u}^{\mathrm{odd}} \frac{(\vb{p}_{eu} \cdot \vb{E}) (\vb{p}_{u0} \cdot \vb{E})}{\hbar^2 (\omega_{u0} - \omega)}
\bigg[ \frac{e^{i (\omega_{e0} - 2 \omega) \tau}}{i (\omega_{e0} - 2 \omega)}
- \frac{e^{i (\omega_{eu} - \omega) \tau}}{i (\omega_{eu} - \omega)} \bigg]_0^t
\end{aligned} c e ( 2 ) ( t ) = − ℏ i u ∑ odd ∫ 0 t ⟨ e ∣ H ^ 1 ( τ ) ∣ u ⟩ c u ( 1 ) ( τ ) e i ω e u τ d τ = i u ∑ odd ℏ 2 ( ω u 0 − ω ) ( p e u ⋅ E ) ( p u 0 ⋅ E ) ∫ 0 t e i ( ω e u + ω u 0 − 2 ω ) τ − e i ( ω e u − ω ) τ d τ = i u ∑ odd ℏ 2 ( ω u 0 − ω ) ( p e u ⋅ E ) ( p u 0 ⋅ E ) [ i ( ω e 0 − 2 ω ) e i ( ω e 0 − 2 ω ) τ − i ( ω e u − ω ) e i ( ω e u − ω ) τ ] 0 t
The second term represents one-photon absorption between ∣ u ⟩ \Ket{u} ∣ u ⟩ and ∣ e ⟩ \Ket{e} ∣ e ⟩ .
We do not care about that, so we drop it, leaving only the first term:
c e ( 2 ) ( t ) ≈ ∑ u o d d ( p e u ⋅ E ) ( p u 0 ⋅ E ) ℏ 2 ( ω u 0 − ω ) e i ( ω e 0 − 2 ω ) t − 1 ω e 0 − 2 ω \begin{aligned}
\boxed{
c_e^{(2)}(t)
\approx \sum_{u}^{\mathrm{odd}} \frac{(\vb{p}_{eu} \cdot \vb{E}) (\vb{p}_{u0} \cdot \vb{E})}{\hbar^2 (\omega_{u0} - \omega)}
\frac{e^{i (\omega_{e0} - 2 \omega) t} - 1}{\omega_{e0} - 2 \omega}
}
\end{aligned} c e ( 2 ) ( t ) ≈ u ∑ odd ℏ 2 ( ω u 0 − ω ) ( p e u ⋅ E ) ( p u 0 ⋅ E ) ω e 0 − 2 ω e i ( ω e 0 − 2 ω ) t − 1
As before, we can define a rate R e ( 2 ) ( t ) R_e^{(2)}(t) R e ( 2 ) ( t )
for all transitions represented by this term:
R e ( 2 ) ( t ) = ∣ c e ( 2 ) ( t ) ∣ 2 t = 1 t ∣ ∑ u o d d ( p e u ⋅ E ) ( p u 0 ⋅ E ) ℏ 2 ( ω u 0 − ω ) ∣ 2 ⋅ ∣ e i ( ω e 0 − 2 ω ) t − 1 ω e 0 − 2 ω ∣ 2 \begin{aligned}
R_e^{(2)}(t)
= \frac{\big| c_e^{(2)}(t) \big|^2}{t}
= \frac{1}{t} \bigg| \sum_{u}^{\mathrm{odd}} \frac{(\vb{p}_{eu} \cdot \vb{E}) (\vb{p}_{u0} \cdot \vb{E})}{\hbar^2 (\omega_{u0} - \omega)} \bigg|^2
\cdot \bigg| \frac{e^{i (\omega_{e0} - 2 \omega) t} - 1}{\omega_{e0} - 2 \omega} \bigg|^2
\end{aligned} R e ( 2 ) ( t ) = t c e ( 2 ) ( t ) 2 = t 1 u ∑ odd ℏ 2 ( ω u 0 − ω ) ( p e u ⋅ E ) ( p u 0 ⋅ E ) 2 ⋅ ω e 0 − 2 ω e i ( ω e 0 − 2 ω ) t − 1 2
Which for t → ∞ t \to \infty t → ∞ takes a similar form to Fermi’s golden rule,
using the formula we proved:
R e ( 2 ) = 2 π ∣ ∑ u o d d ( p e u ⋅ E ) ( p u 0 ⋅ E ) ℏ 2 ( ω u 0 − ω ) ∣ 2 δ ( ω e 0 − 2 ω ) \begin{aligned}
\boxed{
R_e^{(2)}
= 2 \pi \bigg| \sum_{u}^{\mathrm{odd}} \frac{(\vb{p}_{eu} \cdot \vb{E}) (\vb{p}_{u0} \cdot \vb{E})}{\hbar^2 (\omega_{u0} - \omega)} \bigg|^2
\delta(\omega_{e0} - 2 \omega)
}
\end{aligned} R e ( 2 ) = 2 π u ∑ odd ℏ 2 ( ω u 0 − ω ) ( p e u ⋅ E ) ( p u 0 ⋅ E ) 2 δ ( ω e 0 − 2 ω )
This represents two-photon absorption , since it peaks at ω e 0 = 2 ω \omega_{e0} = 2 \omega ω e 0 = 2 ω :
two identical photons ℏ ω \hbar \omega ℏ ω are absorbed simultaneously
to bridge the energy gap ℏ ω e 0 \hbar \omega_{e0} ℏ ω e 0 .
Surprisingly, such a transition can only occur when ⟨ e ∣ p ^ ∣ 0 ⟩ = 0 \matrixel{e}{\vu{p}}{0} = 0 ⟨ e ∣ p ^ ∣ 0 ⟩ = 0 ,
i.e. for any even-numbered final state ∣ e ⟩ \Ket{e} ∣ e ⟩ .
Notice that the rate is proportional to ∣ E ∣ 4 |\vb{E}|^4 ∣ E ∣ 4 ,
so this effect is only noticeable at high light intensities.
Three-photon absorption
For third-order perturbation theory,
all even-numbered states ∣ e ⟩ \Ket{e} ∣ e ⟩ are unchanged:
c e ( 3 ) ( t ) = − i ℏ ∑ u o d d ∫ 0 t ⟨ e ∣ H ^ 1 ( τ ) ∣ u ⟩ c u ( 2 ) ( τ ) e i ω e u τ d τ = 0 \begin{aligned}
c_e^{(3)}(t)
&= -\frac{i}{\hbar} \sum_{u}^{\mathrm{odd}} \int_0^t \matrixel{e}{\hat{H}_1(\tau)}{u} \: c_u^{(2)}(\tau) \: e^{i \omega_{eu} \tau} \dd{\tau}
= 0
\end{aligned} c e ( 3 ) ( t ) = − ℏ i u ∑ odd ∫ 0 t ⟨ e ∣ H ^ 1 ( τ ) ∣ u ⟩ c u ( 2 ) ( τ ) e i ω e u τ d τ = 0
And the odd-numbered states ∣ u ⟩ \Ket{u} ∣ u ⟩ get the following third-order corrections:
c u ( 3 ) ( t ) = − i ℏ ∑ e e v e n ∫ 0 t ⟨ u ∣ H ^ 1 ( τ ) ∣ e ⟩ c e ( 2 ) ( τ ) e i ω u e τ d τ = i ∑ e e v e n ∑ u ′ o d d ( p u e ⋅ E ) ( p e u ′ ⋅ E ) ( p u ′ 0 ⋅ E ) ℏ 3 ( ω u ′ 0 − ω ) ( ω e 0 − 2 ω ) ∫ 0 t e i ( ω u e + ω e 0 − 3 ω ) τ − e i ( ω u e − ω ) τ d τ = i ∑ e e v e n ∑ u ′ o d d ( p u e ⋅ E ) ( p e u ′ ⋅ E ) ( p u ′ 0 ⋅ E ) ℏ 3 ( ω u ′ 0 − ω ) ( ω e 0 − 2 ω ) [ e i ( ω u 0 − 3 ω ) τ i ( ω u 0 − 3 ω ) − e i ( ω u e − ω ) τ i ( ω u e − ω ) ] 0 t \begin{aligned}
c_u^{(3)}(t)
&= -\frac{i}{\hbar} \sum_{e}^{\mathrm{even}} \int_0^t \matrixel{u}{\hat{H}_1(\tau)}{e} \: c_e^{(2)}(\tau) \: e^{i \omega_{ue} \tau} \dd{\tau}
\\
&= i \sum_{e}^{\mathrm{even}} \sum_{u'}^{\mathrm{odd}}
\frac{(\vb{p}_{ue} \cdot \vb{E}) (\vb{p}_{eu'} \cdot \vb{E}) (\vb{p}_{u'0} \cdot \vb{E})}{\hbar^3 (\omega_{u'0} - \omega) (\omega_{e0} - 2 \omega)}
\int_0^t e^{i (\omega_{ue} + \omega_{e0} - 3 \omega) \tau} - e^{i (\omega_{ue} - \omega) \tau} \dd{\tau}
\\
&= i \sum_{e}^{\mathrm{even}} \sum_{u'}^{\mathrm{odd}}
\frac{(\vb{p}_{ue} \cdot \vb{E}) (\vb{p}_{eu'} \cdot \vb{E}) (\vb{p}_{u'0} \cdot \vb{E})}{\hbar^3 (\omega_{u'0} - \omega) (\omega_{e0} - 2 \omega)}
\bigg[ \frac{e^{i (\omega_{u0} - 3 \omega) \tau}}{i (\omega_{u0} - 3 \omega)}
- \frac{e^{i (\omega_{ue} - \omega) \tau}}{i (\omega_{ue} - \omega)} \bigg]_0^t
\end{aligned} c u ( 3 ) ( t ) = − ℏ i e ∑ even ∫ 0 t ⟨ u ∣ H ^ 1 ( τ ) ∣ e ⟩ c e ( 2 ) ( τ ) e i ω u e τ d τ = i e ∑ even u ′ ∑ odd ℏ 3 ( ω u ′ 0 − ω ) ( ω e 0 − 2 ω ) ( p u e ⋅ E ) ( p e u ′ ⋅ E ) ( p u ′ 0 ⋅ E ) ∫ 0 t e i ( ω u e + ω e 0 − 3 ω ) τ − e i ( ω u e − ω ) τ d τ = i e ∑ even u ′ ∑ odd ℏ 3 ( ω u ′ 0 − ω ) ( ω e 0 − 2 ω ) ( p u e ⋅ E ) ( p e u ′ ⋅ E ) ( p u ′ 0 ⋅ E ) [ i ( ω u 0 − 3 ω ) e i ( ω u 0 − 3 ω ) τ − i ( ω u e − ω ) e i ( ω u e − ω ) τ ] 0 t
Once again, the second term is uninteresting,
so we drop it and look at the first term only:
c u ( 3 ) ( t ) ≈ ∑ e e v e n ∑ u ′ o d d ( p u e ⋅ E ) ( p e u ′ ⋅ E ) ( p u ′ 0 ⋅ E ) ℏ 3 ( ω u ′ 0 − ω ) ( ω e 0 − 2 ω ) e i ( ω u 0 − 3 ω ) t − 1 ω u 0 − 3 ω \begin{aligned}
\boxed{
c_u^{(3)}(t)
\approx \sum_{e}^{\mathrm{even}} \sum_{u'}^{\mathrm{odd}}
\frac{(\vb{p}_{ue} \cdot \vb{E}) (\vb{p}_{eu'} \cdot \vb{E}) (\vb{p}_{u'0} \cdot \vb{E})}
{\hbar^3 (\omega_{u'0} - \omega) (\omega_{e0} - 2 \omega)}
\frac{e^{i (\omega_{u0} - 3 \omega) t} - 1}{\omega_{u0} - 3 \omega}
}
\end{aligned} c u ( 3 ) ( t ) ≈ e ∑ even u ′ ∑ odd ℏ 3 ( ω u ′ 0 − ω ) ( ω e 0 − 2 ω ) ( p u e ⋅ E ) ( p e u ′ ⋅ E ) ( p u ′ 0 ⋅ E ) ω u 0 − 3 ω e i ( ω u 0 − 3 ω ) t − 1
The resulting transition rate R u ( 3 ) ( t ) R_u^{(3)}(t) R u ( 3 ) ( t )
is found to have the following familiar form:
R u ( 3 ) ( t ) = ∣ c u ( 3 ) ( t ) ∣ 2 t = 1 t ∣ ∑ e e v e n ∑ u ′ o d d ( p u e ⋅ E ) ( p e u ′ ⋅ E ) ( p u ′ 0 ⋅ E ) ℏ 3 ( ω u ′ 0 − ω ) ( ω e 0 − 2 ω ) ∣ 2 ⋅ ∣ e i ( ω u 0 − 3 ω ) t − 1 ω u 0 − 3 ω ∣ 2 \begin{aligned}
R_u^{(3)}(t)
= \frac{\big| c_u^{(3)}(t) \big|^2}{t}
= \frac{1}{t} \bigg| \sum_{e}^{\mathrm{even}} \sum_{u'}^{\mathrm{odd}}
\frac{(\vb{p}_{ue} \cdot \vb{E}) (\vb{p}_{eu'} \cdot \vb{E}) (\vb{p}_{u'0} \cdot \vb{E})}
{\hbar^3 (\omega_{u'0} - \omega) (\omega_{e0} - 2 \omega)} \bigg|^2
\cdot \bigg| \frac{e^{i (\omega_{u0} - 3 \omega) t} - 1}{\omega_{u0} - 3 \omega} \bigg|^2
\end{aligned} R u ( 3 ) ( t ) = t c u ( 3 ) ( t ) 2 = t 1 e ∑ even u ′ ∑ odd ℏ 3 ( ω u ′ 0 − ω ) ( ω e 0 − 2 ω ) ( p u e ⋅ E ) ( p e u ′ ⋅ E ) ( p u ′ 0 ⋅ E ) 2 ⋅ ω u 0 − 3 ω e i ( ω u 0 − 3 ω ) t − 1 2
Applying our formula to this yields the following analogue of Fermi’s golden rule:
R u ( 3 ) = 2 π ∣ ∑ e e v e n ∑ u ′ o d d ( p u e ⋅ E ) ( p e u ′ ⋅ E ) ( p u ′ 0 ⋅ E ) ℏ 3 ( ω u ′ 0 − ω ) ( ω e 0 − 2 ω ) ∣ 2 δ ( ω u 0 − 3 ω ) \begin{aligned}
\boxed{
R_u^{(3)}
= 2 \pi \bigg| \sum_{e}^{\mathrm{even}} \sum_{u'}^{\mathrm{odd}}
\frac{(\vb{p}_{ue} \cdot \vb{E}) (\vb{p}_{eu'} \cdot \vb{E}) (\vb{p}_{u'0} \cdot \vb{E})}
{\hbar^3 (\omega_{u'0} - \omega) (\omega_{e0} - 2 \omega)} \bigg|^2 \delta(\omega_{u0} - 3 \omega)
}
\end{aligned} R u ( 3 ) = 2 π e ∑ even u ′ ∑ odd ℏ 3 ( ω u ′ 0 − ω ) ( ω e 0 − 2 ω ) ( p u e ⋅ E ) ( p e u ′ ⋅ E ) ( p u ′ 0 ⋅ E ) 2 δ ( ω u 0 − 3 ω )
This represents three-photon absorption , since it peaks at ω u 0 = 3 ω \omega_{u0} = 3 \omega ω u 0 = 3 ω :
three identical photons ℏ ω \hbar \omega ℏ ω are absorbed simultaneously
to bridge the energy gap ℏ ω u 0 \hbar \omega_{u0} ℏ ω u 0 .
This process is similar to one-photon absorption,
in the sense that it can only occur if ⟨ u ∣ p ^ ∣ 0 ⟩ ≠ 0 \matrixel{u}{\vu{p}}{0} \neq 0 ⟨ u ∣ p ^ ∣ 0 ⟩ = 0 .
The rate is proportional to ∣ E ∣ 6 |\vb{E}|^6 ∣ E ∣ 6 ,
so this effect only appears at extremely high light intensities.
N-photon absorption
A pattern has appeared in these calculations:
in N N N th-order perturbation theory,
we get a term representing N N N -photon absorption,
with a transition rate proportional to ∣ E ∣ 2 N |\vb{E}|^{2N} ∣ E ∣ 2 N .
Indeed, we can derive infinitely many formulas in this way,
although the results become increasingly unrealistic
due to the dependence on E \vb{E} E .
If N N N is odd, only odd-numbered destinations ∣ u ⟩ \Ket{u} ∣ u ⟩ are allowed
(assuming the electron starts in the ground state ∣ 0 ⟩ \Ket{0} ∣ 0 ⟩ ),
and if N N N is even, only even-numbered destinations ∣ e ⟩ \Ket{e} ∣ e ⟩ .
Note that nothing has been said about the energies of these states
(other than ∣ 0 ⟩ \Ket{0} ∣ 0 ⟩ being the minimum);
everything is determined by the matrix elements ⟨ f ∣ p ^ ∣ i ⟩ \matrixel{f}{\vu{p}}{i} ⟨ f ∣ p ^ ∣ i ⟩ .
References
R.W. Boyd,
Nonlinear optics , 4th edition,
Academic Press.
R. Shankar,
Principles of quantum mechanics , 2nd edition,
Springer.