Categories:
Mathematics ,
Physics .
Parabolic cylindrical coordinates 
Parabolic cylindrical coordinates  extend parabolic coordinates ( σ , τ ) (\sigma, \tau) ( σ , τ )   to 3D,
by describing a point in space using the variables ( σ , τ , z ) (\sigma, \tau, z) ( σ , τ , z )  .
The z z z  -axis is the same as in the Cartesian system, (hence the name cylindrical ),
while the coordinate lines of σ \sigma σ   and τ \tau τ   are confocal parabolas.
Cartesian coordinates  ( x , y , z ) (x, y, z) ( x , y , z )  
and this system ( σ , τ , z ) (\sigma, \tau, z) ( σ , τ , z )   are related by:
x = 1 2 ( τ 2 − σ 2 ) y = σ τ z = z \begin{aligned}
    \boxed{
        \begin{aligned}
            x
            &= \frac{1}{2} (\tau^2 - \sigma^2)
            \\
            y
            &= \sigma \tau
            \\
            z
            &= z
        \end{aligned}
    }
\end{aligned} x y z  = 2 1  ( τ 2 − σ 2 ) = σ τ = z     
Conversely, a point given in ( x , y , z ) (x, y, z) ( x , y , z )   can be converted
to ( σ , τ , z ) (\sigma, \tau, z) ( σ , τ , z )   using these formulae:
σ = x 2 + y 2 − x τ = s g n ( y ) x 2 + y 2 + x z = z \begin{aligned}
    \boxed{
        \begin{aligned}
            \sigma
            &= \sqrt{\sqrt{x^2 + y^2} - x}
            \\
            \tau
            &= \sgn(y) \sqrt{\sqrt{x^2 + y^2} + x}
            \\
            z
            &= z
        \end{aligned}
    }
\end{aligned} σ τ z  = x 2 + y 2  − x  = sgn ( y ) x 2 + y 2  + x  = z     
Parabolic cylindrical coordinates form
an orthogonal curvilinear system ,
whose scale factors  h σ h_\sigma h σ   , h τ h_\tau h τ    and h z h_z h z    we need.
To get those, we calculate the unnormalized local basis:
h σ e ^ σ = e ^ x ∂ x ∂ σ + e ^ y ∂ y ∂ σ + e ^ z ∂ z ∂ σ = − e ^ x σ + e ^ y τ h τ e ^ τ = e ^ x ∂ x ∂ τ + e ^ y ∂ y ∂ τ + e ^ z ∂ z ∂ τ = e ^ x τ + e ^ y σ h σ e ^ σ = e ^ x ∂ x ∂ z + e ^ y ∂ y ∂ z + e ^ z ∂ z ∂ z = e ^ z \begin{aligned}
    h_\sigma \vu{e}_\sigma
    &= \vu{e}_x \pdv{x}{\sigma} + \vu{e}_y \pdv{y}{\sigma} + \vu{e}_z \pdv{z}{\sigma}
    \\
    &= - \vu{e}_x \sigma + \vu{e}_y \tau
    \\
    h_\tau \vu{e}_\tau
    &= \vu{e}_x \pdv{x}{\tau} + \vu{e}_y \pdv{y}{\tau} + \vu{e}_z \pdv{z}{\tau}
    \\
    &= \vu{e}_x \tau + \vu{e}_y \sigma
    \\
    h_\sigma \vu{e}_\sigma
    &= \vu{e}_x \pdv{x}{z} + \vu{e}_y \pdv{y}{z} + \vu{e}_z \pdv{z}{z}
    \\
    &= \vu{e}_z
\end{aligned} h σ  e ^ σ  h τ  e ^ τ  h σ  e ^ σ   = e ^ x  ∂ σ ∂ x  + e ^ y  ∂ σ ∂ y  + e ^ z  ∂ σ ∂ z  = − e ^ x  σ + e ^ y  τ = e ^ x  ∂ τ ∂ x  + e ^ y  ∂ τ ∂ y  + e ^ z  ∂ τ ∂ z  = e ^ x  τ + e ^ y  σ = e ^ x  ∂ z ∂ x  + e ^ y  ∂ z ∂ y  + e ^ z  ∂ z ∂ z  = e ^ z    
By normalizing the local basis vectors 
e ^ σ \vu{e}_\sigma e ^ σ   , e ^ τ \vu{e}_\tau e ^ τ    and e ^ z \vu{e}_z e ^ z   ,
we arrive at these expressions,
where we have defined the abbreviation ρ \rho ρ   for convenience:
h σ = ρ ≡ σ 2 + τ 2 h τ = ρ ≡ σ 2 + τ 2 h z = 1 e ^ σ = − e ^ x σ ρ + e ^ y τ ρ e ^ τ = e ^ x τ ρ + e ^ y σ ρ e ^ z = e ^ z \begin{aligned}
    \boxed{
        \begin{aligned}
            h_\sigma
            &= \rho
            \equiv \sqrt{\sigma^2 + \tau^2}
            \\
            h_\tau
            &= \rho
            \equiv \sqrt{\sigma^2 + \tau^2}
            \\
            h_z
            &= 1
        \end{aligned}
    }
    \qquad\qquad
    \boxed{
        \begin{aligned}
            \vu{e}_\sigma
            &= - \vu{e}_x \frac{\sigma}{\rho} + \vu{e}_y \frac{\tau}{\rho}
            \\
            \vu{e}_\tau
            &= \vu{e}_x \frac{\tau}{\rho} + \vu{e}_y \frac{\sigma}{\rho}
            \\
            \vu{e}_z
            &= \vu{e}_z
        \end{aligned}
    }
\end{aligned} h σ  h τ  h z   = ρ ≡ σ 2 + τ 2  = ρ ≡ σ 2 + τ 2  = 1   e ^ σ  e ^ τ  e ^ z   = − e ^ x  ρ σ  + e ^ y  ρ τ  = e ^ x  ρ τ  + e ^ y  ρ σ  = e ^ z      
Thanks to these scale factors, we can easily convert calculus from the Cartesian system
using the standard formulae for orthogonal curvilinear coordinates.
Differential elements 
For line integrals,
the tangent vector element d ℓ \dd{\vb{\ell}} d ℓ   for a curve is as follows:
d ℓ = e ^ σ   ρ d σ +   e ^ τ   ρ d τ +   e ^ z d z \begin{aligned}
    \boxed{
        \dd{\vb{\ell}}
        = \vu{e}_\sigma \: \rho \dd{\sigma} + \: \vu{e}_\tau \: \rho \dd{\tau} + \: \vu{e}_z \dd{z}
    }
\end{aligned} d ℓ = e ^ σ  ρ d σ + e ^ τ  ρ d τ + e ^ z  d z    
For surface integrals,
the normal vector element d S \dd{\vb{S}} d S   for a surface is given by:
d S = e ^ σ   ρ d τ d z +   e ^ τ   ρ d σ d z +   e ^ z   ρ 2 d σ d τ \begin{aligned}
    \boxed{
        \dd{\vb{S}}
        = \vu{e}_\sigma \: \rho \dd{\tau} \dd{z} + \: \vu{e}_\tau \: \rho \dd{\sigma} \dd{z} + \: \vu{e}_z \: \rho^2 \dd{\sigma} \dd{\tau}
    }
\end{aligned} d S = e ^ σ  ρ d τ d z + e ^ τ  ρ d σ d z + e ^ z  ρ 2 d σ d τ    
And for volume integrals,
the infinitesimal volume d V \dd{V} d V   takes the following form:
d V = ρ 2 d σ d τ d z \begin{aligned}
    \boxed{
        \dd{V}
        = \rho^2 \dd{\sigma} \dd{\tau} \dd{z}
    }
\end{aligned} d V = ρ 2 d σ d τ d z    
Common operations 
The basic vector operations (gradient, divergence, curl and Laplacian) are given by:
∇ f = e ^ σ 1 ρ ∂ f ∂ σ + e ^ τ 1 ρ ∂ f ∂ τ + e ^ z ∂ f ∂ z \begin{aligned}
    \boxed{
        \nabla f
        = \vu{e}_\sigma \frac{1}{\rho} \pdv{f}{\sigma}
        + \vu{e}_\tau \frac{1}{\rho} \pdv{f}{\tau}
        + \vu{e}_z \pdv{f}{z}
    }
\end{aligned} ∇ f = e ^ σ  ρ 1  ∂ σ ∂ f  + e ^ τ  ρ 1  ∂ τ ∂ f  + e ^ z  ∂ z ∂ f     
∇ ⋅ V = 1 ρ ∂ V σ ∂ σ + σ V σ ρ 3 + 1 ρ ∂ V τ ∂ τ + τ V τ ρ 3 + ∂ V z ∂ z \begin{aligned}
    \boxed{
        \nabla \cdot \vb{V}
        = \frac{1}{\rho} \pdv{V_\sigma}{\sigma} + \frac{\sigma V_\sigma}{\rho^3}
        + \frac{1}{\rho} \pdv{V_\tau}{\tau} + \frac{\tau V_\tau}{\rho^3}
        + \pdv{V_z}{z}
    }
\end{aligned} ∇ ⋅ V = ρ 1  ∂ σ ∂ V σ   + ρ 3 σ V σ   + ρ 1  ∂ τ ∂ V τ   + ρ 3 τ V τ   + ∂ z ∂ V z      
∇ × V = e ^ σ ( 1 ρ ∂ V z ∂ τ − ∂ V τ ∂ z )   + e ^ τ ( ∂ V σ ∂ z − 1 ρ ∂ V z ∂ σ )   + e ^ z ( 1 ρ ∂ V τ ∂ σ + σ V τ ρ 3 − 1 ρ ∂ V σ ∂ τ − τ V σ ρ 3 ) \begin{aligned}
    \boxed{
        \begin{aligned}
            \nabla \times \vb{V}
            &= \quad \vu{e}_\sigma \bigg( \frac{1}{\rho} \pdv{V_z}{\tau} - \pdv{V_\tau}{z} \bigg)
            \\
            &\quad\: + \vu{e}_\tau \bigg( \pdv{V_\sigma}{z} - \frac{1}{\rho} \pdv{V_z}{\sigma} \bigg)
            \\
            &\quad\: + \vu{e}_z \bigg( \frac{1}{\rho} \pdv{V_\tau}{\sigma} + \frac{\sigma V_\tau}{\rho^3}
            - \frac{1}{\rho} \pdv{V_\sigma}{\tau} - \frac{\tau V_\sigma}{\rho^3} \bigg)
        \end{aligned}
    }
\end{aligned} ∇ × V  = e ^ σ  ( ρ 1  ∂ τ ∂ V z   − ∂ z ∂ V τ   ) + e ^ τ  ( ∂ z ∂ V σ   − ρ 1  ∂ σ ∂ V z   ) + e ^ z  ( ρ 1  ∂ σ ∂ V τ   + ρ 3 σ V τ   − ρ 1  ∂ τ ∂ V σ   − ρ 3 τ V σ   )     
∇ 2 f = 1 ρ 2 ∂ 2 f ∂ σ 2 + 1 ρ 2 ∂ 2 f ∂ τ 2 + ∂ 2 f ∂ z 2 \begin{aligned}
    \boxed{
        \nabla^2 f
        = \frac{1}{\rho^2} \pdvn{2}{f}{\sigma} + \frac{1}{\rho^2} \pdvn{2}{f}{\tau} + \pdvn{2}{f}{z}
    }
\end{aligned} ∇ 2 f = ρ 2 1  ∂ σ 2 ∂ 2 f  + ρ 2 1  ∂ τ 2 ∂ 2 f  + ∂ z 2 ∂ 2 f     
Uncommon operations 
Uncommon operations include:
the gradient of a divergence ∇ ( ∇ ⋅ V ) \nabla (\nabla \cdot \vb{V}) ∇ ( ∇ ⋅ V )  ,
the gradient of a vector ∇ V \nabla \vb{V} ∇ V  ,
the advection of a vector ( U ⋅ ∇ ) V (\vb{U} \cdot \nabla) \vb{V} ( U ⋅ ∇ ) V   with respect to U \vb{U} U  ,
the Laplacian of a vector ∇ 2 V \nabla^2 \vb{V} ∇ 2 V  ,
and the divergence of a 2nd-order tensor ∇ ⋅ T ‾ ‾ \nabla \cdot \overline{\overline{\vb{T}}} ∇ ⋅ T  :
∇ ( ∇ ⋅ V ) = e ^ σ ( 1 ρ 2 ∂ 2 V σ ∂ σ 2 + 1 ρ 2 ∂ 2 V τ ∂ σ ∂ τ + 1 ρ ∂ 2 V z ∂ σ ∂ z + τ ρ 4 ∂ V τ ∂ σ − σ ρ 4 ∂ V τ ∂ τ + ρ 2 − 3 σ 2 ρ 6 V σ − 3 σ τ V τ ρ 6 )   + e ^ τ ( 1 ρ 2 ∂ 2 V σ ∂ τ ∂ σ + 1 ρ 2 ∂ 2 V τ ∂ τ 2 + 1 ρ ∂ 2 V z ∂ τ ∂ z − τ ρ 4 ∂ V σ ∂ σ + σ ρ 4 ∂ V σ ∂ τ − 3 σ τ V σ ρ 6 + ρ 2 − 3 τ 2 ρ 6 V τ )   + e ^ z ( 1 ρ ∂ 2 V σ ∂ z ∂ σ + 1 ρ ∂ 2 V τ ∂ z ∂ τ + ∂ 2 V z ∂ z 2 + σ ρ 3 ∂ V σ ∂ z + τ ρ 3 ∂ V τ ∂ z ) \begin{aligned}
    \boxed{
        \begin{aligned}
            \nabla (\nabla \cdot \vb{V})
            &= \quad \vu{e}_\sigma \bigg( \frac{1}{\rho^2} \pdvn{2}{V_\sigma}{\sigma} + \frac{1}{\rho^2} \mpdv{V_\tau}{\sigma}{\tau}
            + \frac{1}{\rho} \mpdv{V_z}{\sigma}{z}
            \\
            &\qquad\qquad + \frac{\tau}{\rho^4} \pdv{V_\tau}{\sigma} - \frac{\sigma}{\rho^4} \pdv{V_\tau}{\tau}
            + \frac{\rho^2 - 3 \sigma^2}{\rho^6} V_\sigma - \frac{3 \sigma \tau V_\tau}{\rho^6} \bigg)
            \\
            &\quad\: + \vu{e}_\tau \bigg( \frac{1}{\rho^2} \mpdv{V_\sigma}{\tau}{\sigma} + \frac{1}{\rho^2} \pdvn{2}{V_\tau}{\tau}
            + \frac{1}{\rho} \mpdv{V_z}{\tau}{z}
            \\
            &\qquad\qquad - \frac{\tau}{\rho^4} \pdv{V_\sigma}{\sigma} + \frac{\sigma}{\rho^4} \pdv{V_\sigma}{\tau}
            - \frac{3 \sigma \tau V_\sigma}{\rho^6} + \frac{\rho^2 - 3 \tau^2}{\rho^6} V_\tau \bigg)
            \\
            &\quad\: + \vu{e}_z \bigg( \frac{1}{\rho} \mpdv{V_\sigma}{z}{\sigma} + \frac{1}{\rho} \mpdv{V_\tau}{z}{\tau} + \pdvn{2}{V_z}{z}
            + \frac{\sigma}{\rho^3} \pdv{V_\sigma}{z} + \frac{\tau}{\rho^3} \pdv{V_\tau}{z} \bigg)
        \end{aligned}
    }
\end{aligned} ∇ ( ∇ ⋅ V )  = e ^ σ  ( ρ 2 1  ∂ σ 2 ∂ 2 V σ   + ρ 2 1  ∂ σ ∂ τ ∂ 2 V τ   + ρ 1  ∂ σ ∂ z ∂ 2 V z   + ρ 4 τ  ∂ σ ∂ V τ   − ρ 4 σ  ∂ τ ∂ V τ   + ρ 6 ρ 2 − 3 σ 2  V σ  − ρ 6 3 σ τ V τ   ) + e ^ τ  ( ρ 2 1  ∂ τ ∂ σ ∂ 2 V σ   + ρ 2 1  ∂ τ 2 ∂ 2 V τ   + ρ 1  ∂ τ ∂ z ∂ 2 V z   − ρ 4 τ  ∂ σ ∂ V σ   + ρ 4 σ  ∂ τ ∂ V σ   − ρ 6 3 σ τ V σ   + ρ 6 ρ 2 − 3 τ 2  V τ  ) + e ^ z  ( ρ 1  ∂ z ∂ σ ∂ 2 V σ   + ρ 1  ∂ z ∂ τ ∂ 2 V τ   + ∂ z 2 ∂ 2 V z   + ρ 3 σ  ∂ z ∂ V σ   + ρ 3 τ  ∂ z ∂ V τ   )     
∇ V = e ^ σ e ^ σ ( 1 ρ ∂ V σ ∂ σ + τ V τ ρ 3 ) + e ^ σ e ^ τ ( 1 ρ ∂ V τ ∂ σ − τ V σ ρ 3 ) + e ^ σ e ^ z 1 ρ ∂ V z ∂ σ   + e ^ τ e ^ σ ( 1 ρ ∂ V σ ∂ τ − σ V τ ρ 3 ) + e ^ τ e ^ τ ( 1 ρ ∂ V τ ∂ τ + σ V σ ρ 3 ) + e ^ τ e ^ z 1 ρ ∂ V z ∂ τ   + e ^ z e ^ σ ∂ V σ ∂ z + e ^ z e ^ τ ∂ V τ ∂ z + e ^ z e ^ z ∂ V z ∂ z \begin{aligned}
    \boxed{
        \begin{aligned}
            \nabla \vb{V}
            &= \quad \vu{e}_\sigma \vu{e}_\sigma \bigg( \frac{1}{\rho} \pdv{V_\sigma}{\sigma} + \frac{\tau V_\tau}{\rho^3} \bigg)
            + \vu{e}_\sigma \vu{e}_\tau \bigg( \frac{1}{\rho} \pdv{V_\tau}{\sigma} - \frac{\tau V_\sigma}{\rho^3} \bigg)
            + \vu{e}_\sigma \vu{e}_z \frac{1}{\rho} \pdv{V_z}{\sigma}
            \\
            &\quad\: + \vu{e}_\tau \vu{e}_\sigma \bigg( \frac{1}{\rho} \pdv{V_\sigma}{\tau} - \frac{\sigma V_\tau}{\rho^3} \bigg)
            + \vu{e}_\tau \vu{e}_\tau \bigg( \frac{1}{\rho} \pdv{V_\tau}{\tau} + \frac{\sigma V_\sigma}{\rho^3} \bigg)
            + \vu{e}_\tau \vu{e}_z \frac{1}{\rho} \pdv{V_z}{\tau}
            \\
            &\quad\: + \vu{e}_z \vu{e}_\sigma \pdv{V_\sigma}{z}
            + \vu{e}_z \vu{e}_\tau \pdv{V_\tau}{z}
            + \vu{e}_z \vu{e}_z \pdv{V_z}{z}
        \end{aligned}
    }
\end{aligned} ∇ V  = e ^ σ  e ^ σ  ( ρ 1  ∂ σ ∂ V σ   + ρ 3 τ V τ   ) + e ^ σ  e ^ τ  ( ρ 1  ∂ σ ∂ V τ   − ρ 3 τ V σ   ) + e ^ σ  e ^ z  ρ 1  ∂ σ ∂ V z   + e ^ τ  e ^ σ  ( ρ 1  ∂ τ ∂ V σ   − ρ 3 σ V τ   ) + e ^ τ  e ^ τ  ( ρ 1  ∂ τ ∂ V τ   + ρ 3 σ V σ   ) + e ^ τ  e ^ z  ρ 1  ∂ τ ∂ V z   + e ^ z  e ^ σ  ∂ z ∂ V σ   + e ^ z  e ^ τ  ∂ z ∂ V τ   + e ^ z  e ^ z  ∂ z ∂ V z       
( U ⋅ ∇ ) V = e ^ σ ( U σ ρ ∂ V σ ∂ σ + U τ ρ ∂ V σ ∂ τ + U z ∂ V σ ∂ z + τ ρ 3 U σ V τ − σ ρ 3 U τ V τ )   + e ^ τ ( U σ ρ ∂ V τ ∂ σ + U τ ρ ∂ V τ ∂ τ + U z ∂ V τ ∂ z + σ ρ 3 U τ V σ − τ ρ 3 U σ V σ )   + e ^ z ( U σ ρ ∂ V z ∂ σ + U τ ρ ∂ V z ∂ τ + U z ∂ V z ∂ z ) \begin{aligned}
    \boxed{
        \begin{aligned}
            (\vb{U} \cdot \nabla) \vb{V}
            &= \quad \vu{e}_\sigma \bigg( \frac{U_\sigma}{\rho} \pdv{V_\sigma}{\sigma} + \frac{U_\tau}{\rho} \pdv{V_\sigma}{\tau} + U_z \pdv{V_\sigma}{z}
            + \frac{\tau}{\rho^3} U_\sigma V_\tau - \frac{\sigma}{\rho^3} U_\tau V_\tau \bigg)
            \\
            &\quad\: + \vu{e}_\tau \bigg( \frac{U_\sigma}{\rho} \pdv{V_\tau}{\sigma} + \frac{U_\tau}{\rho} \pdv{V_\tau}{\tau} + U_z \pdv{V_\tau}{z}
            + \frac{\sigma}{\rho^3} U_\tau V_\sigma - \frac{\tau}{\rho^3} U_\sigma V_\sigma \bigg)
            \\
            &\quad\: + \vu{e}_z \bigg( \frac{U_\sigma}{\rho} \pdv{V_z}{\sigma} + \frac{U_\tau}{\rho} \pdv{V_z}{\tau} + U_z \pdv{V_z}{z} \bigg)
        \end{aligned}
    }
\end{aligned} ( U ⋅ ∇ ) V  = e ^ σ  ( ρ U σ   ∂ σ ∂ V σ   + ρ U τ   ∂ τ ∂ V σ   + U z  ∂ z ∂ V σ   + ρ 3 τ  U σ  V τ  − ρ 3 σ  U τ  V τ  ) + e ^ τ  ( ρ U σ   ∂ σ ∂ V τ   + ρ U τ   ∂ τ ∂ V τ   + U z  ∂ z ∂ V τ   + ρ 3 σ  U τ  V σ  − ρ 3 τ  U σ  V σ  ) + e ^ z  ( ρ U σ   ∂ σ ∂ V z   + ρ U τ   ∂ τ ∂ V z   + U z  ∂ z ∂ V z   )     
∇ 2 V = e ^ σ ( 1 ρ 2 ∂ 2 V σ ∂ σ 2 + 1 ρ 2 ∂ 2 V σ ∂ τ 2 + ∂ 2 V σ ∂ z 2 + 2 τ ρ 4 ∂ V τ ∂ σ − 2 σ ρ 4 ∂ V τ ∂ τ − V σ ρ 4 )   + e ^ τ ( 1 ρ 2 ∂ 2 V τ ∂ σ 2 + 1 ρ 2 ∂ 2 V τ ∂ τ 2 + ∂ 2 V τ ∂ z 2 − 2 τ ρ 4 ∂ V σ ∂ σ + 2 σ ρ 4 ∂ V σ ∂ τ − V τ ρ 4 )   + e ^ z ( 1 ρ 2 ∂ 2 V z ∂ σ 2 + 1 ρ 2 ∂ 2 V z ∂ τ 2 + ∂ 2 V z ∂ z 2 ) \begin{aligned}
    \boxed{
        \begin{aligned}
            \nabla^2 \vb{V}
            &= \quad \vu{e}_\sigma \bigg( \frac{1}{\rho^2} \pdvn{2}{V_\sigma}{\sigma} + \frac{1}{\rho^2} \pdvn{2}{V_\sigma}{\tau} + \pdvn{2}{V_\sigma}{z}
            + \frac{2 \tau}{\rho^4} \pdv{V_\tau}{\sigma} - \frac{2 \sigma}{\rho^4} \pdv{V_\tau}{\tau} - \frac{V_\sigma}{\rho^4} \bigg)
            \\
            &\quad\: + \vu{e}_\tau \bigg( \frac{1}{\rho^2} \pdvn{2}{V_\tau}{\sigma} + \frac{1}{\rho^2} \pdvn{2}{V_\tau}{\tau} + \pdvn{2}{V_\tau}{z}
            - \frac{2 \tau}{\rho^4} \pdv{V_\sigma}{\sigma} + \frac{2 \sigma}{\rho^4} \pdv{V_\sigma}{\tau} - \frac{V_\tau}{\rho^4} \bigg)
            \\
            &\quad\: + \vu{e}_z \bigg( \frac{1}{\rho^2} \pdvn{2}{V_z}{\sigma} + \frac{1}{\rho^2} \pdvn{2}{V_z}{\tau} + \pdvn{2}{V_z}{z} \bigg)
        \end{aligned}
    }
\end{aligned} ∇ 2 V  = e ^ σ  ( ρ 2 1  ∂ σ 2 ∂ 2 V σ   + ρ 2 1  ∂ τ 2 ∂ 2 V σ   + ∂ z 2 ∂ 2 V σ   + ρ 4 2 τ  ∂ σ ∂ V τ   − ρ 4 2 σ  ∂ τ ∂ V τ   − ρ 4 V σ   ) + e ^ τ  ( ρ 2 1  ∂ σ 2 ∂ 2 V τ   + ρ 2 1  ∂ τ 2 ∂ 2 V τ   + ∂ z 2 ∂ 2 V τ   − ρ 4 2 τ  ∂ σ ∂ V σ   + ρ 4 2 σ  ∂ τ ∂ V σ   − ρ 4 V τ   ) + e ^ z  ( ρ 2 1  ∂ σ 2 ∂ 2 V z   + ρ 2 1  ∂ τ 2 ∂ 2 V z   + ∂ z 2 ∂ 2 V z   )     
∇ ⋅ T ‾ ‾ = e ^ σ ( 1 ρ ∂ T σ σ ∂ σ + 1 ρ ∂ T τ σ ∂ τ + ∂ T z σ ∂ z + σ T σ σ ρ 3 + τ T σ τ ρ 3 + τ T τ σ ρ 3 − σ T τ τ ρ 3 ) + e ^ τ ( 1 ρ ∂ T σ τ ∂ σ + 1 ρ ∂ T τ τ ∂ τ + ∂ T k τ ∂ z − τ T σ σ ρ 3 + σ T σ τ ρ 3 + σ T τ σ ρ 3 + τ T τ τ ρ 3 ) + e ^ z ( 1 ρ ∂ T σ z ∂ σ + 1 ρ ∂ T τ z ∂ τ + ∂ T z z ∂ z + σ T σ z ρ 3 + τ T τ z ρ 3 ) \begin{aligned}
    \boxed{
        \begin{aligned}
            \nabla \cdot \overline{\overline{\mathbf{T}}}
            &= \vu{e}_\sigma \bigg( \frac{1}{\rho} \pdv{T_{\sigma \sigma}}{\sigma} + \frac{1}{\rho} \pdv{T_{\tau \sigma}}{\tau} + \pdv{T_{z \sigma}}{z}
            + \frac{\sigma T_{\sigma \sigma}}{\rho^3} + \frac{\tau T_{\sigma \tau}}{\rho^3}
            + \frac{\tau T_{\tau \sigma}}{\rho^3} - \frac{\sigma T_{\tau \tau}}{\rho^3} \bigg)
            \\
            &+ \vu{e}_\tau \bigg( \frac{1}{\rho} \pdv{T_{\sigma \tau}}{\sigma} + \frac{1}{\rho} \pdv{T_{\tau \tau}}{\tau} + \pdv{T_{k \tau}}{z}
            - \frac{\tau T_{\sigma \sigma}}{\rho^3} + \frac{\sigma T_{\sigma \tau}}{\rho^3}
            + \frac{\sigma T_{\tau \sigma}}{\rho^3} + \frac{\tau T_{\tau \tau}}{\rho^3} \bigg)
            \\
            &+ \vu{e}_z \bigg( \frac{1}{\rho} \pdv{T_{\sigma z}}{\sigma} + \frac{1}{\rho} \pdv{T_{\tau z}}{\tau} + \pdv{T_{zz}}{z}
            + \frac{\sigma T_{\sigma z}}{\rho^3} + \frac{\tau T_{\tau z}}{\rho^3} \bigg)
        \end{aligned}
    }
\end{aligned} ∇ ⋅ T  = e ^ σ  ( ρ 1  ∂ σ ∂ T σσ   + ρ 1  ∂ τ ∂ T τ σ   + ∂ z ∂ T z σ   + ρ 3 σ T σσ   + ρ 3 τ T σ τ   + ρ 3 τ T τ σ   − ρ 3 σ T ττ   ) + e ^ τ  ( ρ 1  ∂ σ ∂ T σ τ   + ρ 1  ∂ τ ∂ T ττ   + ∂ z ∂ T k τ   − ρ 3 τ T σσ   + ρ 3 σ T σ τ   + ρ 3 σ T τ σ   + ρ 3 τ T ττ   ) + e ^ z  ( ρ 1  ∂ σ ∂ T σ z   + ρ 1  ∂ τ ∂ T τ z   + ∂ z ∂ T zz   + ρ 3 σ T σ z   + ρ 3 τ T τ z   )     
References 
  M.L. Boas,
Mathematical methods in the physical sciences , 2nd edition,
Wiley.