Categories:
Mathematics ,
Physics .
Parabolic cylindrical coordinates
Parabolic cylindrical coordinates extend parabolic coordinates ( σ , τ ) (\sigma, \tau) ( σ , τ ) to 3D,
by describing a point in space using the variables ( σ , τ , z ) (\sigma, \tau, z) ( σ , τ , z ) .
The z z z -axis is the same as in the Cartesian system, (hence the name cylindrical ),
while the coordinate lines of σ \sigma σ and τ \tau τ are confocal parabolas.
Cartesian coordinates ( x , y , z ) (x, y, z) ( x , y , z )
and this system ( σ , τ , z ) (\sigma, \tau, z) ( σ , τ , z ) are related by:
x = 1 2 ( τ 2 − σ 2 ) y = σ τ z = z \begin{aligned}
\boxed{
\begin{aligned}
x
&= \frac{1}{2} (\tau^2 - \sigma^2)
\\
y
&= \sigma \tau
\\
z
&= z
\end{aligned}
}
\end{aligned} x y z = 2 1 ( τ 2 − σ 2 ) = σ τ = z
Conversely, a point given in ( x , y , z ) (x, y, z) ( x , y , z ) can be converted
to ( σ , τ , z ) (\sigma, \tau, z) ( σ , τ , z ) using these formulae:
σ = x 2 + y 2 − x τ = s g n ( y ) x 2 + y 2 + x z = z \begin{aligned}
\boxed{
\begin{aligned}
\sigma
&= \sqrt{\sqrt{x^2 + y^2} - x}
\\
\tau
&= \sgn(y) \sqrt{\sqrt{x^2 + y^2} + x}
\\
z
&= z
\end{aligned}
}
\end{aligned} σ τ z = x 2 + y 2 − x = sgn ( y ) x 2 + y 2 + x = z
Parabolic cylindrical coordinates form
an orthogonal curvilinear system ,
whose scale factors h σ h_\sigma h σ , h τ h_\tau h τ and h z h_z h z we need.
To get those, we calculate the unnormalized local basis:
h σ e ^ σ = e ^ x ∂ x ∂ σ + e ^ y ∂ y ∂ σ + e ^ z ∂ z ∂ σ = − e ^ x σ + e ^ y τ h τ e ^ τ = e ^ x ∂ x ∂ τ + e ^ y ∂ y ∂ τ + e ^ z ∂ z ∂ τ = e ^ x τ + e ^ y σ h σ e ^ σ = e ^ x ∂ x ∂ z + e ^ y ∂ y ∂ z + e ^ z ∂ z ∂ z = e ^ z \begin{aligned}
h_\sigma \vu{e}_\sigma
&= \vu{e}_x \pdv{x}{\sigma} + \vu{e}_y \pdv{y}{\sigma} + \vu{e}_z \pdv{z}{\sigma}
\\
&= - \vu{e}_x \sigma + \vu{e}_y \tau
\\
h_\tau \vu{e}_\tau
&= \vu{e}_x \pdv{x}{\tau} + \vu{e}_y \pdv{y}{\tau} + \vu{e}_z \pdv{z}{\tau}
\\
&= \vu{e}_x \tau + \vu{e}_y \sigma
\\
h_\sigma \vu{e}_\sigma
&= \vu{e}_x \pdv{x}{z} + \vu{e}_y \pdv{y}{z} + \vu{e}_z \pdv{z}{z}
\\
&= \vu{e}_z
\end{aligned} h σ e ^ σ h τ e ^ τ h σ e ^ σ = e ^ x ∂ σ ∂ x + e ^ y ∂ σ ∂ y + e ^ z ∂ σ ∂ z = − e ^ x σ + e ^ y τ = e ^ x ∂ τ ∂ x + e ^ y ∂ τ ∂ y + e ^ z ∂ τ ∂ z = e ^ x τ + e ^ y σ = e ^ x ∂ z ∂ x + e ^ y ∂ z ∂ y + e ^ z ∂ z ∂ z = e ^ z
By normalizing the local basis vectors
e ^ σ \vu{e}_\sigma e ^ σ , e ^ τ \vu{e}_\tau e ^ τ and e ^ z \vu{e}_z e ^ z ,
we arrive at these expressions,
where we have defined the abbreviation ρ \rho ρ for convenience:
h σ = ρ ≡ σ 2 + τ 2 h τ = ρ ≡ σ 2 + τ 2 h z = 1 e ^ σ = − e ^ x σ ρ + e ^ y τ ρ e ^ τ = e ^ x τ ρ + e ^ y σ ρ e ^ z = e ^ z \begin{aligned}
\boxed{
\begin{aligned}
h_\sigma
&= \rho
\equiv \sqrt{\sigma^2 + \tau^2}
\\
h_\tau
&= \rho
\equiv \sqrt{\sigma^2 + \tau^2}
\\
h_z
&= 1
\end{aligned}
}
\qquad\qquad
\boxed{
\begin{aligned}
\vu{e}_\sigma
&= - \vu{e}_x \frac{\sigma}{\rho} + \vu{e}_y \frac{\tau}{\rho}
\\
\vu{e}_\tau
&= \vu{e}_x \frac{\tau}{\rho} + \vu{e}_y \frac{\sigma}{\rho}
\\
\vu{e}_z
&= \vu{e}_z
\end{aligned}
}
\end{aligned} h σ h τ h z = ρ ≡ σ 2 + τ 2 = ρ ≡ σ 2 + τ 2 = 1 e ^ σ e ^ τ e ^ z = − e ^ x ρ σ + e ^ y ρ τ = e ^ x ρ τ + e ^ y ρ σ = e ^ z
Thanks to these scale factors, we can easily convert calculus from the Cartesian system
using the standard formulae for orthogonal curvilinear coordinates.
Differential elements
For line integrals,
the tangent vector element d ℓ \dd{\vb{\ell}} d ℓ for a curve is as follows:
d ℓ = e ^ σ ρ d σ + e ^ τ ρ d τ + e ^ z d z \begin{aligned}
\boxed{
\dd{\vb{\ell}}
= \vu{e}_\sigma \: \rho \dd{\sigma} + \: \vu{e}_\tau \: \rho \dd{\tau} + \: \vu{e}_z \dd{z}
}
\end{aligned} d ℓ = e ^ σ ρ d σ + e ^ τ ρ d τ + e ^ z d z
For surface integrals,
the normal vector element d S \dd{\vb{S}} d S for a surface is given by:
d S = e ^ σ ρ d τ d z + e ^ τ ρ d σ d z + e ^ z ρ 2 d σ d τ \begin{aligned}
\boxed{
\dd{\vb{S}}
= \vu{e}_\sigma \: \rho \dd{\tau} \dd{z} + \: \vu{e}_\tau \: \rho \dd{\sigma} \dd{z} + \: \vu{e}_z \: \rho^2 \dd{\sigma} \dd{\tau}
}
\end{aligned} d S = e ^ σ ρ d τ d z + e ^ τ ρ d σ d z + e ^ z ρ 2 d σ d τ
And for volume integrals,
the infinitesimal volume d V \dd{V} d V takes the following form:
d V = ρ 2 d σ d τ d z \begin{aligned}
\boxed{
\dd{V}
= \rho^2 \dd{\sigma} \dd{\tau} \dd{z}
}
\end{aligned} d V = ρ 2 d σ d τ d z
Common operations
The basic vector operations (gradient, divergence, curl and Laplacian) are given by:
∇ f = e ^ σ 1 ρ ∂ f ∂ σ + e ^ τ 1 ρ ∂ f ∂ τ + e ^ z ∂ f ∂ z \begin{aligned}
\boxed{
\nabla f
= \vu{e}_\sigma \frac{1}{\rho} \pdv{f}{\sigma}
+ \vu{e}_\tau \frac{1}{\rho} \pdv{f}{\tau}
+ \vu{e}_z \pdv{f}{z}
}
\end{aligned} ∇ f = e ^ σ ρ 1 ∂ σ ∂ f + e ^ τ ρ 1 ∂ τ ∂ f + e ^ z ∂ z ∂ f
∇ ⋅ V = 1 ρ ∂ V σ ∂ σ + σ V σ ρ 3 + 1 ρ ∂ V τ ∂ τ + τ V τ ρ 3 + ∂ V z ∂ z \begin{aligned}
\boxed{
\nabla \cdot \vb{V}
= \frac{1}{\rho} \pdv{V_\sigma}{\sigma} + \frac{\sigma V_\sigma}{\rho^3}
+ \frac{1}{\rho} \pdv{V_\tau}{\tau} + \frac{\tau V_\tau}{\rho^3}
+ \pdv{V_z}{z}
}
\end{aligned} ∇ ⋅ V = ρ 1 ∂ σ ∂ V σ + ρ 3 σ V σ + ρ 1 ∂ τ ∂ V τ + ρ 3 τ V τ + ∂ z ∂ V z
∇ × V = e ^ σ ( 1 ρ ∂ V z ∂ τ − ∂ V τ ∂ z ) + e ^ τ ( ∂ V σ ∂ z − 1 ρ ∂ V z ∂ σ ) + e ^ z ( 1 ρ ∂ V τ ∂ σ + σ V τ ρ 3 − 1 ρ ∂ V σ ∂ τ − τ V σ ρ 3 ) \begin{aligned}
\boxed{
\begin{aligned}
\nabla \times \vb{V}
&= \quad \vu{e}_\sigma \bigg( \frac{1}{\rho} \pdv{V_z}{\tau} - \pdv{V_\tau}{z} \bigg)
\\
&\quad\: + \vu{e}_\tau \bigg( \pdv{V_\sigma}{z} - \frac{1}{\rho} \pdv{V_z}{\sigma} \bigg)
\\
&\quad\: + \vu{e}_z \bigg( \frac{1}{\rho} \pdv{V_\tau}{\sigma} + \frac{\sigma V_\tau}{\rho^3}
- \frac{1}{\rho} \pdv{V_\sigma}{\tau} - \frac{\tau V_\sigma}{\rho^3} \bigg)
\end{aligned}
}
\end{aligned} ∇ × V = e ^ σ ( ρ 1 ∂ τ ∂ V z − ∂ z ∂ V τ ) + e ^ τ ( ∂ z ∂ V σ − ρ 1 ∂ σ ∂ V z ) + e ^ z ( ρ 1 ∂ σ ∂ V τ + ρ 3 σ V τ − ρ 1 ∂ τ ∂ V σ − ρ 3 τ V σ )
∇ 2 f = 1 ρ 2 ∂ 2 f ∂ σ 2 + 1 ρ 2 ∂ 2 f ∂ τ 2 + ∂ 2 f ∂ z 2 \begin{aligned}
\boxed{
\nabla^2 f
= \frac{1}{\rho^2} \pdvn{2}{f}{\sigma} + \frac{1}{\rho^2} \pdvn{2}{f}{\tau} + \pdvn{2}{f}{z}
}
\end{aligned} ∇ 2 f = ρ 2 1 ∂ σ 2 ∂ 2 f + ρ 2 1 ∂ τ 2 ∂ 2 f + ∂ z 2 ∂ 2 f
Uncommon operations
Uncommon operations include:
the gradient of a divergence ∇ ( ∇ ⋅ V ) \nabla (\nabla \cdot \vb{V}) ∇ ( ∇ ⋅ V ) ,
the gradient of a vector ∇ V \nabla \vb{V} ∇ V ,
the advection of a vector ( U ⋅ ∇ ) V (\vb{U} \cdot \nabla) \vb{V} ( U ⋅ ∇ ) V with respect to U \vb{U} U ,
the Laplacian of a vector ∇ 2 V \nabla^2 \vb{V} ∇ 2 V ,
and the divergence of a 2nd-order tensor ∇ ⋅ T ‾ ‾ \nabla \cdot \overline{\overline{\vb{T}}} ∇ ⋅ T :
∇ ( ∇ ⋅ V ) = e ^ σ ( 1 ρ 2 ∂ 2 V σ ∂ σ 2 + 1 ρ 2 ∂ 2 V τ ∂ σ ∂ τ + 1 ρ ∂ 2 V z ∂ σ ∂ z + τ ρ 4 ∂ V τ ∂ σ − σ ρ 4 ∂ V τ ∂ τ + ρ 2 − 3 σ 2 ρ 6 V σ − 3 σ τ V τ ρ 6 ) + e ^ τ ( 1 ρ 2 ∂ 2 V σ ∂ τ ∂ σ + 1 ρ 2 ∂ 2 V τ ∂ τ 2 + 1 ρ ∂ 2 V z ∂ τ ∂ z − τ ρ 4 ∂ V σ ∂ σ + σ ρ 4 ∂ V σ ∂ τ − 3 σ τ V σ ρ 6 + ρ 2 − 3 τ 2 ρ 6 V τ ) + e ^ z ( 1 ρ ∂ 2 V σ ∂ z ∂ σ + 1 ρ ∂ 2 V τ ∂ z ∂ τ + ∂ 2 V z ∂ z 2 + σ ρ 3 ∂ V σ ∂ z + τ ρ 3 ∂ V τ ∂ z ) \begin{aligned}
\boxed{
\begin{aligned}
\nabla (\nabla \cdot \vb{V})
&= \quad \vu{e}_\sigma \bigg( \frac{1}{\rho^2} \pdvn{2}{V_\sigma}{\sigma} + \frac{1}{\rho^2} \mpdv{V_\tau}{\sigma}{\tau}
+ \frac{1}{\rho} \mpdv{V_z}{\sigma}{z}
\\
&\qquad\qquad + \frac{\tau}{\rho^4} \pdv{V_\tau}{\sigma} - \frac{\sigma}{\rho^4} \pdv{V_\tau}{\tau}
+ \frac{\rho^2 - 3 \sigma^2}{\rho^6} V_\sigma - \frac{3 \sigma \tau V_\tau}{\rho^6} \bigg)
\\
&\quad\: + \vu{e}_\tau \bigg( \frac{1}{\rho^2} \mpdv{V_\sigma}{\tau}{\sigma} + \frac{1}{\rho^2} \pdvn{2}{V_\tau}{\tau}
+ \frac{1}{\rho} \mpdv{V_z}{\tau}{z}
\\
&\qquad\qquad - \frac{\tau}{\rho^4} \pdv{V_\sigma}{\sigma} + \frac{\sigma}{\rho^4} \pdv{V_\sigma}{\tau}
- \frac{3 \sigma \tau V_\sigma}{\rho^6} + \frac{\rho^2 - 3 \tau^2}{\rho^6} V_\tau \bigg)
\\
&\quad\: + \vu{e}_z \bigg( \frac{1}{\rho} \mpdv{V_\sigma}{z}{\sigma} + \frac{1}{\rho} \mpdv{V_\tau}{z}{\tau} + \pdvn{2}{V_z}{z}
+ \frac{\sigma}{\rho^3} \pdv{V_\sigma}{z} + \frac{\tau}{\rho^3} \pdv{V_\tau}{z} \bigg)
\end{aligned}
}
\end{aligned} ∇ ( ∇ ⋅ V ) = e ^ σ ( ρ 2 1 ∂ σ 2 ∂ 2 V σ + ρ 2 1 ∂ σ ∂ τ ∂ 2 V τ + ρ 1 ∂ σ ∂ z ∂ 2 V z + ρ 4 τ ∂ σ ∂ V τ − ρ 4 σ ∂ τ ∂ V τ + ρ 6 ρ 2 − 3 σ 2 V σ − ρ 6 3 σ τ V τ ) + e ^ τ ( ρ 2 1 ∂ τ ∂ σ ∂ 2 V σ + ρ 2 1 ∂ τ 2 ∂ 2 V τ + ρ 1 ∂ τ ∂ z ∂ 2 V z − ρ 4 τ ∂ σ ∂ V σ + ρ 4 σ ∂ τ ∂ V σ − ρ 6 3 σ τ V σ + ρ 6 ρ 2 − 3 τ 2 V τ ) + e ^ z ( ρ 1 ∂ z ∂ σ ∂ 2 V σ + ρ 1 ∂ z ∂ τ ∂ 2 V τ + ∂ z 2 ∂ 2 V z + ρ 3 σ ∂ z ∂ V σ + ρ 3 τ ∂ z ∂ V τ )
∇ V = e ^ σ e ^ σ ( 1 ρ ∂ V σ ∂ σ + τ V τ ρ 3 ) + e ^ σ e ^ τ ( 1 ρ ∂ V τ ∂ σ − τ V σ ρ 3 ) + e ^ σ e ^ z 1 ρ ∂ V z ∂ σ + e ^ τ e ^ σ ( 1 ρ ∂ V σ ∂ τ − σ V τ ρ 3 ) + e ^ τ e ^ τ ( 1 ρ ∂ V τ ∂ τ + σ V σ ρ 3 ) + e ^ τ e ^ z 1 ρ ∂ V z ∂ τ + e ^ z e ^ σ ∂ V σ ∂ z + e ^ z e ^ τ ∂ V τ ∂ z + e ^ z e ^ z ∂ V z ∂ z \begin{aligned}
\boxed{
\begin{aligned}
\nabla \vb{V}
&= \quad \vu{e}_\sigma \vu{e}_\sigma \bigg( \frac{1}{\rho} \pdv{V_\sigma}{\sigma} + \frac{\tau V_\tau}{\rho^3} \bigg)
+ \vu{e}_\sigma \vu{e}_\tau \bigg( \frac{1}{\rho} \pdv{V_\tau}{\sigma} - \frac{\tau V_\sigma}{\rho^3} \bigg)
+ \vu{e}_\sigma \vu{e}_z \frac{1}{\rho} \pdv{V_z}{\sigma}
\\
&\quad\: + \vu{e}_\tau \vu{e}_\sigma \bigg( \frac{1}{\rho} \pdv{V_\sigma}{\tau} - \frac{\sigma V_\tau}{\rho^3} \bigg)
+ \vu{e}_\tau \vu{e}_\tau \bigg( \frac{1}{\rho} \pdv{V_\tau}{\tau} + \frac{\sigma V_\sigma}{\rho^3} \bigg)
+ \vu{e}_\tau \vu{e}_z \frac{1}{\rho} \pdv{V_z}{\tau}
\\
&\quad\: + \vu{e}_z \vu{e}_\sigma \pdv{V_\sigma}{z}
+ \vu{e}_z \vu{e}_\tau \pdv{V_\tau}{z}
+ \vu{e}_z \vu{e}_z \pdv{V_z}{z}
\end{aligned}
}
\end{aligned} ∇ V = e ^ σ e ^ σ ( ρ 1 ∂ σ ∂ V σ + ρ 3 τ V τ ) + e ^ σ e ^ τ ( ρ 1 ∂ σ ∂ V τ − ρ 3 τ V σ ) + e ^ σ e ^ z ρ 1 ∂ σ ∂ V z + e ^ τ e ^ σ ( ρ 1 ∂ τ ∂ V σ − ρ 3 σ V τ ) + e ^ τ e ^ τ ( ρ 1 ∂ τ ∂ V τ + ρ 3 σ V σ ) + e ^ τ e ^ z ρ 1 ∂ τ ∂ V z + e ^ z e ^ σ ∂ z ∂ V σ + e ^ z e ^ τ ∂ z ∂ V τ + e ^ z e ^ z ∂ z ∂ V z
( U ⋅ ∇ ) V = e ^ σ ( U σ ρ ∂ V σ ∂ σ + U τ ρ ∂ V σ ∂ τ + U z ∂ V σ ∂ z + τ ρ 3 U σ V τ − σ ρ 3 U τ V τ ) + e ^ τ ( U σ ρ ∂ V τ ∂ σ + U τ ρ ∂ V τ ∂ τ + U z ∂ V τ ∂ z + σ ρ 3 U τ V σ − τ ρ 3 U σ V σ ) + e ^ z ( U σ ρ ∂ V z ∂ σ + U τ ρ ∂ V z ∂ τ + U z ∂ V z ∂ z ) \begin{aligned}
\boxed{
\begin{aligned}
(\vb{U} \cdot \nabla) \vb{V}
&= \quad \vu{e}_\sigma \bigg( \frac{U_\sigma}{\rho} \pdv{V_\sigma}{\sigma} + \frac{U_\tau}{\rho} \pdv{V_\sigma}{\tau} + U_z \pdv{V_\sigma}{z}
+ \frac{\tau}{\rho^3} U_\sigma V_\tau - \frac{\sigma}{\rho^3} U_\tau V_\tau \bigg)
\\
&\quad\: + \vu{e}_\tau \bigg( \frac{U_\sigma}{\rho} \pdv{V_\tau}{\sigma} + \frac{U_\tau}{\rho} \pdv{V_\tau}{\tau} + U_z \pdv{V_\tau}{z}
+ \frac{\sigma}{\rho^3} U_\tau V_\sigma - \frac{\tau}{\rho^3} U_\sigma V_\sigma \bigg)
\\
&\quad\: + \vu{e}_z \bigg( \frac{U_\sigma}{\rho} \pdv{V_z}{\sigma} + \frac{U_\tau}{\rho} \pdv{V_z}{\tau} + U_z \pdv{V_z}{z} \bigg)
\end{aligned}
}
\end{aligned} ( U ⋅ ∇ ) V = e ^ σ ( ρ U σ ∂ σ ∂ V σ + ρ U τ ∂ τ ∂ V σ + U z ∂ z ∂ V σ + ρ 3 τ U σ V τ − ρ 3 σ U τ V τ ) + e ^ τ ( ρ U σ ∂ σ ∂ V τ + ρ U τ ∂ τ ∂ V τ + U z ∂ z ∂ V τ + ρ 3 σ U τ V σ − ρ 3 τ U σ V σ ) + e ^ z ( ρ U σ ∂ σ ∂ V z + ρ U τ ∂ τ ∂ V z + U z ∂ z ∂ V z )
∇ 2 V = e ^ σ ( 1 ρ 2 ∂ 2 V σ ∂ σ 2 + 1 ρ 2 ∂ 2 V σ ∂ τ 2 + ∂ 2 V σ ∂ z 2 + 2 τ ρ 4 ∂ V τ ∂ σ − 2 σ ρ 4 ∂ V τ ∂ τ − V σ ρ 4 ) + e ^ τ ( 1 ρ 2 ∂ 2 V τ ∂ σ 2 + 1 ρ 2 ∂ 2 V τ ∂ τ 2 + ∂ 2 V τ ∂ z 2 − 2 τ ρ 4 ∂ V σ ∂ σ + 2 σ ρ 4 ∂ V σ ∂ τ − V τ ρ 4 ) + e ^ z ( 1 ρ 2 ∂ 2 V z ∂ σ 2 + 1 ρ 2 ∂ 2 V z ∂ τ 2 + ∂ 2 V z ∂ z 2 ) \begin{aligned}
\boxed{
\begin{aligned}
\nabla^2 \vb{V}
&= \quad \vu{e}_\sigma \bigg( \frac{1}{\rho^2} \pdvn{2}{V_\sigma}{\sigma} + \frac{1}{\rho^2} \pdvn{2}{V_\sigma}{\tau} + \pdvn{2}{V_\sigma}{z}
+ \frac{2 \tau}{\rho^4} \pdv{V_\tau}{\sigma} - \frac{2 \sigma}{\rho^4} \pdv{V_\tau}{\tau} - \frac{V_\sigma}{\rho^4} \bigg)
\\
&\quad\: + \vu{e}_\tau \bigg( \frac{1}{\rho^2} \pdvn{2}{V_\tau}{\sigma} + \frac{1}{\rho^2} \pdvn{2}{V_\tau}{\tau} + \pdvn{2}{V_\tau}{z}
- \frac{2 \tau}{\rho^4} \pdv{V_\sigma}{\sigma} + \frac{2 \sigma}{\rho^4} \pdv{V_\sigma}{\tau} - \frac{V_\tau}{\rho^4} \bigg)
\\
&\quad\: + \vu{e}_z \bigg( \frac{1}{\rho^2} \pdvn{2}{V_z}{\sigma} + \frac{1}{\rho^2} \pdvn{2}{V_z}{\tau} + \pdvn{2}{V_z}{z} \bigg)
\end{aligned}
}
\end{aligned} ∇ 2 V = e ^ σ ( ρ 2 1 ∂ σ 2 ∂ 2 V σ + ρ 2 1 ∂ τ 2 ∂ 2 V σ + ∂ z 2 ∂ 2 V σ + ρ 4 2 τ ∂ σ ∂ V τ − ρ 4 2 σ ∂ τ ∂ V τ − ρ 4 V σ ) + e ^ τ ( ρ 2 1 ∂ σ 2 ∂ 2 V τ + ρ 2 1 ∂ τ 2 ∂ 2 V τ + ∂ z 2 ∂ 2 V τ − ρ 4 2 τ ∂ σ ∂ V σ + ρ 4 2 σ ∂ τ ∂ V σ − ρ 4 V τ ) + e ^ z ( ρ 2 1 ∂ σ 2 ∂ 2 V z + ρ 2 1 ∂ τ 2 ∂ 2 V z + ∂ z 2 ∂ 2 V z )
∇ ⋅ T ‾ ‾ = e ^ σ ( 1 ρ ∂ T σ σ ∂ σ + 1 ρ ∂ T τ σ ∂ τ + ∂ T z σ ∂ z + σ T σ σ ρ 3 + τ T σ τ ρ 3 + τ T τ σ ρ 3 − σ T τ τ ρ 3 ) + e ^ τ ( 1 ρ ∂ T σ τ ∂ σ + 1 ρ ∂ T τ τ ∂ τ + ∂ T k τ ∂ z − τ T σ σ ρ 3 + σ T σ τ ρ 3 + σ T τ σ ρ 3 + τ T τ τ ρ 3 ) + e ^ z ( 1 ρ ∂ T σ z ∂ σ + 1 ρ ∂ T τ z ∂ τ + ∂ T z z ∂ z + σ T σ z ρ 3 + τ T τ z ρ 3 ) \begin{aligned}
\boxed{
\begin{aligned}
\nabla \cdot \overline{\overline{\mathbf{T}}}
&= \vu{e}_\sigma \bigg( \frac{1}{\rho} \pdv{T_{\sigma \sigma}}{\sigma} + \frac{1}{\rho} \pdv{T_{\tau \sigma}}{\tau} + \pdv{T_{z \sigma}}{z}
+ \frac{\sigma T_{\sigma \sigma}}{\rho^3} + \frac{\tau T_{\sigma \tau}}{\rho^3}
+ \frac{\tau T_{\tau \sigma}}{\rho^3} - \frac{\sigma T_{\tau \tau}}{\rho^3} \bigg)
\\
&+ \vu{e}_\tau \bigg( \frac{1}{\rho} \pdv{T_{\sigma \tau}}{\sigma} + \frac{1}{\rho} \pdv{T_{\tau \tau}}{\tau} + \pdv{T_{k \tau}}{z}
- \frac{\tau T_{\sigma \sigma}}{\rho^3} + \frac{\sigma T_{\sigma \tau}}{\rho^3}
+ \frac{\sigma T_{\tau \sigma}}{\rho^3} + \frac{\tau T_{\tau \tau}}{\rho^3} \bigg)
\\
&+ \vu{e}_z \bigg( \frac{1}{\rho} \pdv{T_{\sigma z}}{\sigma} + \frac{1}{\rho} \pdv{T_{\tau z}}{\tau} + \pdv{T_{zz}}{z}
+ \frac{\sigma T_{\sigma z}}{\rho^3} + \frac{\tau T_{\tau z}}{\rho^3} \bigg)
\end{aligned}
}
\end{aligned} ∇ ⋅ T = e ^ σ ( ρ 1 ∂ σ ∂ T σσ + ρ 1 ∂ τ ∂ T τ σ + ∂ z ∂ T z σ + ρ 3 σ T σσ + ρ 3 τ T σ τ + ρ 3 τ T τ σ − ρ 3 σ T ττ ) + e ^ τ ( ρ 1 ∂ σ ∂ T σ τ + ρ 1 ∂ τ ∂ T ττ + ∂ z ∂ T k τ − ρ 3 τ T σσ + ρ 3 σ T σ τ + ρ 3 σ T τ σ + ρ 3 τ T ττ ) + e ^ z ( ρ 1 ∂ σ ∂ T σ z + ρ 1 ∂ τ ∂ T τ z + ∂ z ∂ T zz + ρ 3 σ T σ z + ρ 3 τ T τ z )
References
M.L. Boas,
Mathematical methods in the physical sciences , 2nd edition,
Wiley.