Categories: Laser theory, Optics, Physics.

SALT equation

The steady-state ab initio laser theory (SALT) is a theoretical description of lasers, whose mode-centric approach makes it especially appropriate for microscopically small lasers.

Consider the Maxwell-Bloch equations, governing the complex polarization vector P+\vb{P}^{+} and the scalar population inversion DD of a set of active atoms (or quantum dots) embedded in a passive linear background material with refractive index c/vc / v. The system is affected by a driving electric field E+(t)=E0+eiωt\vb{E}^{+}(t) = \vb{E}_0^{+} e^{-i \omega t}, such that the set of equations is:

μ02P+t2=××E++1v22E+t2P+t=(γ+iω0)P+i(p0E+)p0+DDt=γ(D0D)+i2(PE+P+E)\begin{aligned} - \mu_0 \pdvn{2}{\vb{P}^{+}}{t} &= \nabla \cross \nabla \cross \vb{E}^{+} + \frac{1}{v^2} \pdvn{2}{\vb{E}^{+}}{t} \\ \pdv{\vb{P}^{+}}{t} &= - \Big( \gamma_\perp + i \omega_0 \Big) \vb{P}^{+} - \frac{i}{\hbar} \Big( \vb{p}_0^{-} \cdot \vb{E}^{+} \Big) \vb{p}_0^{+} D \\ \pdv{D}{t} &= \gamma_\parallel (D_0 - D) + \frac{i 2}{\hbar} \Big( \vb{P}^{-} \cdot \vb{E}^{+} - \vb{P}^{+} \cdot \vb{E}^{-} \Big) \end{aligned}

Where ω0\hbar \omega_0 is the band gap of the active atoms, and γ\gamma_\perp and γ\gamma_\parallel are relaxation rates of the atoms’ polarization and population inversion, respectively. D0D_0 is the equilibrium inversion, i.e. the value of DD if there is no lasing. Note that D0D_0 also represents the pump, and both D0D_0 and vv depend on position x\vb{x}. Finally, the transition dipole matrix elements p0\vb{p}_0^{-} and p0+\vb{p}_0^{+} are given by:

p0qex^gp0+qgx^e=(p0)\begin{aligned} \vb{p}_0^{-} \equiv q \matrixel{e}{\vu{x}}{g} \qquad \qquad \vb{p}_0^{+} \equiv q \matrixel{g}{\vu{x}}{e} = (\vb{p}_0^{-})^* \end{aligned}

With q<0q < 0 the electron charge, x^\vu{x} the quantum position operator, and g\ket{g} and e\ket{e} respectively the ground state and first excitation of the active atoms.

We start by assuming that the cavity has NN quasinormal modes Ψn\Psi_n, each with a corresponding polarization pn\vb{p}_n of the active matter. Note that this ansatz already suggests that the interactions between the modes are limited:

E+(x,t)=n=1NΨn(x)eiωntP+(x,t)=n=1Npn(x)eiωnt\begin{aligned} \vb{E}^{+}(\vb{x}, t) = \sum_{n = 1}^N \Psi_n(\vb{x}) \: e^{- i \omega_n t} \qquad \qquad \vb{P}^{+}(\vb{x}, t) = \sum_{n = 1}^N \vb{p}_n(\vb{x}) \: e^{- i \omega_n t} \end{aligned}

Using the modes’ linear independence to treat each term of the summation individually, the first two Maxwell-Bloch equations turn into, respectively:

μ0ωn2pn=××Ψn1v2ωn2Ψniωnpn=(iω0+γ)pn+i(p0+p0)ΨnD\begin{aligned} \mu_0 \omega_n^2 \vb{p}_n &= \nabla \cross \nabla \cross \Psi_n - \frac{1}{v^2} \omega_n^2 \Psi_n \\ i \omega_n \vb{p}_n &= \big( i \omega_0 + \gamma_\perp \big) \vb{p}_n + \frac{i}{\hbar} \big(\vb{p}_0^{+} \vb{p}_0^{-}\big) \cdot \Psi_n \: D \end{aligned}

With being p0+p0\vb{p}_0^{+} \vb{p}_0^{-} a dyadic product. Isolating the latter equation for pn\vb{p}_n gives us:

pn=(p0+p0)ΨnD((ωnω0)+iγ)=γ(ωn)Dγ(p0+p0)Ψn\begin{aligned} \vb{p}_n &= \frac{\big(\vb{p}_0^{+} \vb{p}_0^{-}\big) \cdot \Psi_n \: D}{\hbar \big((\omega_n - \omega_0) + i \gamma_\perp\big)} = \frac{\gamma(\omega_n) D}{\hbar \gamma_\perp} \big(\vb{p}_0^{+} \vb{p}_0^{-}\big) \cdot \Psi_n \end{aligned}

Where we have defined the Lorentzian gain curve γ(ωn)\gamma(\omega_n) as follows, which represents the laser’s preferred frequencies for amplification:

γ(ωn)γ(ωnω0)+iγ\begin{aligned} \gamma(\omega_n) \equiv \frac{\gamma_\perp}{(\omega_n - \omega_0) + i \gamma_\perp} \end{aligned}

Inserting this expression for pn\vb{p}_n into the first Maxwell-Bloch equation yields the prototypical form of the SALT equation, where we still need to replace DD with known quantities:

0=(××ωn21v2ωn2μ0γ(ωn)Dγ(p0+p0))Ψn\begin{aligned} 0 &= \bigg( \nabla \cross \nabla \cross - \, \omega_n^2 \frac{1}{v^2} - \omega_n^2 \frac{\mu_0 \gamma(\omega_n) D}{\hbar \gamma_\perp} (\vb{p}_0^{+} \vb{p}_0^{-}) \cdot \bigg) \Psi_n \end{aligned}

To rewrite DD, we turn to its (Maxwell-Bloch) equation of motion, making the crucial stationary inversion approximation D/t=0\ipdv{D}{t} = 0:

D=D0+i2γ(PE+P+E)\begin{aligned} D &= D_0 + \frac{i 2}{\hbar \gamma_\parallel} \Big( \vb{P}^{-} \cdot \vb{E}^{+} - \vb{P}^{+} \cdot \vb{E}^{-} \Big) \end{aligned}

This is the most aggressive approximation we will make: it removes all definite phase relations between modes, and effectively eliminates time as a variable. We insert our ansatz for E+\vb{E}^{+} and P+\vb{P}^{+}, and point out that only active lasing modes contribute to DD:

D=D0+i2γν,μactive(pνΨμei(ωνωμ)tpνΨμei(ωμων)t)\begin{aligned} D &= D_0 + \frac{i 2}{\hbar \gamma_\parallel} \sum_{\nu, \mu}^\mathrm{active} \bigg( \vb{p}_\nu^* \cdot \Psi_\mu e^{i (\omega_\nu - \omega_\mu) t} - \vb{p}_\nu \cdot \Psi_\mu^* e^{i (\omega_\mu - \omega_\nu) t} \bigg) \end{aligned}

Here, we make the rotating wave approximation to neglect all terms where νμ\nu \neq \mu on the basis that they oscillate too quickly, leaving only ν=μ\nu = \mu:

D=D0+i2γνact.(pνΨνpνΨν)\begin{aligned} D &= D_0 + \frac{i 2}{\hbar \gamma_\parallel} \sum_{\nu}^\mathrm{act.} \bigg( \vb{p}_\nu^* \cdot \Psi_\nu - \vb{p}_\nu \cdot \Psi_\nu^* \bigg) \end{aligned}

Inserting our earlier equation for pn\vb{p}_n and using the fact that p0+=(p0)\vb{p}_0^{+} = (\vb{p}_0^{-})^* leads us to:

D=D0+i2D2γγνact.(γ(ων)(p0+p0) ⁣ ⁣ΨνΨνγ(ων)(p0+p0) ⁣ ⁣ΨνΨν)=D0+i2D2γγνact.(γ(ων)(p0+Ψν)p0Ψνγ(ων)(p0Ψν)p0+Ψν)=D0+i2D2γγνact.(γ(ων)γ(ων))p0Ψν2\begin{aligned} D &= D_0 + \frac{i 2 D}{\hbar^2 \gamma_\parallel \gamma_\perp} \sum_{\nu}^\mathrm{act.} \bigg( \gamma^*(\omega_\nu) \big(\vb{p}_0^{+} \vb{p}_0^{-}\big)^* \!\cdot\! \Psi_\nu^* \cdot \Psi_\nu - \gamma(\omega_\nu) \big(\vb{p}_0^{+} \vb{p}_0^{-}\big) \!\cdot\! \Psi_\nu \cdot \Psi_\nu^* \bigg) \\ &= D_0 + \frac{i 2 D}{\hbar^2 \gamma_\parallel \gamma_\perp} \sum_{\nu}^\mathrm{act.} \bigg( \gamma^*(\omega_\nu) \big(\vb{p}_0^{+} \cdot \Psi_\nu^*\big) \vb{p}_0^{-} \cdot \Psi_\nu - \gamma(\omega_\nu) \big(\vb{p}_0^{-} \cdot \Psi_\nu\big) \vb{p}_0^{+} \cdot \Psi_\nu^* \bigg) \\ &= D_0 + \frac{i 2 D}{\hbar^2 \gamma_\parallel \gamma_\perp} \sum_{\nu}^\mathrm{act.} \Big( \gamma^*(\omega_\nu) - \gamma(\omega_\nu) \Big) \big|\vb{p}_0^{-} \cdot \Psi_\nu\big|^2 \end{aligned}

By putting the terms on a common denominator, it is easily shown that:

γ(ων)γ(ων)=γ((ωνω0)+iγ)(ωνω0)2+γ2γ((ωνω0)iγ)(ωνω0)2+γ2=γ(iγ+iγ)(ωνω0)2+γ2=i2γ(ων)2\begin{aligned} \gamma^*(\omega_\nu) - \gamma(\omega_\nu) &= \frac{\gamma_\perp ((\omega_\nu - \omega_0) + i \gamma_\perp)}{(\omega_\nu - \omega_0)^2 + \gamma_\perp^2} - \frac{\gamma_\perp ((\omega_\nu - \omega_0) - i \gamma_\perp)}{(\omega_\nu - \omega_0)^2 + \gamma_\perp^2} \\ &= \frac{\gamma_\perp (i \gamma_\perp + i \gamma_\perp)}{(\omega_\nu - \omega_0)^2 + \gamma_\perp^2} = i 2 \big|\gamma(\omega_\nu)\big|^2 \end{aligned}

Inserting this into our equation for DD gives the following expression:

D=D04D2γγνact.γ(ων)p0Ψν2\begin{aligned} D &= D_0 - \frac{4 D}{\hbar^2 \gamma_\parallel \gamma_\perp} \sum_{\nu}^\mathrm{act.} \Big|\gamma(\omega_\nu) \vb{p}_0^{-} \cdot \Psi_\nu\Big|^2 \end{aligned}

We then properly isolate this for DD to get its final form, namely:

D=D0(1+42γγνact.γ(ων)p0Ψν2)1\begin{aligned} D &= D_0 \bigg( 1 + \frac{4}{\hbar^2 \gamma_\parallel \gamma_\perp} \sum_{\nu}^\mathrm{act.} \Big|\gamma(\omega_\nu) \vb{p}_0^{-} \cdot \Psi_\nu\Big|^2 \bigg)^{-1} \end{aligned}

Substituting this into the prototypical SALT equation from earlier yields the most general form of the SALT equation, upon which the theory is built:

0=(××ωn2[1v2(x)+μ0γ(ωn)γD0(x)1+h(x)(p0+p0)])Ψn(x)\begin{aligned} \boxed{ 0 = \bigg( \nabla \cross \nabla \cross -\,\omega_n^2 \bigg[ \frac{1}{v^2(\vb{x})} + \frac{\mu_0 \gamma(\omega_n)}{\hbar \gamma_\perp} \frac{D_0(\vb{x})}{1 + h(\vb{x})} (\vb{p}_0^{+} \vb{p}_0^{-}) \cdot \bigg] \bigg) \Psi_n(\vb{x}) } \end{aligned}

Where we have defined spatial hole burning function h(x)h(\vb{x}) like so, representing the depletion of the supply of charge carriers as they are consumed by the active lasing modes:

h(x)42γγνact.γ(ων)p0Ψν(x)2\begin{aligned} \boxed{ h(\vb{x}) \equiv \frac{4}{\hbar^2 \gamma_\parallel \gamma_\perp} \sum_{\nu}^\mathrm{act.} \Big|\gamma(\omega_\nu) \vb{p}_0^{-} \cdot \Psi_\nu(\vb{x})\Big|^2 } \end{aligned}

Many authors assume that p0Ψn\vb{p}_0^- \parallel \Psi_n, so that only its amplitude g2p0+p0|g|^2 \equiv \vb{p}_0^{+} \cdot \vb{p}_0^{-} matters. In that case, they often non-dimensionalize DD and Ψn\Psi_n by dividing out the units dcd_c and ece_c:

Ψ~nΨnececγγ2gD~Ddcdcε0γg2\begin{aligned} \tilde{\Psi}_n \equiv \frac{\Psi_n}{e_c} \qquad e_c \equiv \frac{\hbar \sqrt{\gamma_\parallel \gamma_\perp}}{2 |g|} \qquad \qquad \tilde{D} \equiv \frac{D}{d_c} \qquad d_c \equiv \frac{\varepsilon_0 \hbar \gamma_\perp}{|g|^2} \end{aligned}

And then the SALT equation and hole burning function hh are reduced to the following, where the vacuum wavenumber kn=ωn/ck_n = \omega_n / c:

0=(××kn2[εr+γ(ckn)D~01+h])Ψ~nh(x)=νact.γ(ckν)Ψ~ν(x)2\begin{aligned} 0 = \bigg( \nabla \cross \nabla \cross -\,k_n^2 \bigg[ \varepsilon_r + \gamma(c k_n) \frac{\tilde{D}_0}{1 + h} \bigg] \bigg) \tilde{\Psi}_n \qquad h(\vb{x}) = \sum_{\nu}^\mathrm{act.} \Big|\gamma(c k_\nu) \tilde{\Psi}_\nu(\vb{x})\Big|^2 \end{aligned}

In addition, some papers only consider 1D or 2D transverse magnetic (TM) modes, in which case the fields are scalars. Using the vector identity

××Ψ=(Ψ)2Ψ\begin{aligned} \nabla \cross \nabla \cross \Psi = \nabla (\nabla \cdot \Psi) - \nabla^2 \Psi \end{aligned}

Where Ψ=0\nabla \cdot \Psi = 0 thanks to Gauss’ law, so we get an even further simplified SALT equation:

0=(2+kn2[εr+γ(ckn)D~01+h])Ψ~n\begin{aligned} 0 = \bigg( \nabla^2 +\,k_n^2 \bigg[ \varepsilon_r + \gamma(c k_n) \frac{\tilde{D}_0}{1 + h} \bigg] \bigg) \tilde{\Psi}_n \end{aligned}

Given εr(x)\varepsilon_r(\vb{x}) and D0(x)D_0(\vb{x}), the challenge is to solve this eigenvalue problem for knk_n and Ψn\Psi_n, with the boundary condition that Ψn\Psi_n is a plane wave at infinity, i.e. light is leaving the cavity.

If Im(kn)<0\Imag(k_n) < 0, the nnth mode’s amplitude decays with time, so it acts as an LED: it emits photons without any significant light amplification taking place. Upon gradually increasing the pump D0D_0 in the active region, all Im(kn)\Imag(k_n) become less negative, until one hits the real axis Im(kn)=0\Imag(k_n) = 0, at which point that mode starts lasing: its Light gets Amplified by Stimulated Emission of Radiation (LASER). After that, D0D_0 can be increased even further until some other knk_n become real, so there are multiple active modes competing for charge carriers.

Below threshold (i.e. before any mode is lasing), the problem is linear in Ψn\Psi_n, but above threshold it is nonlinear via h(x)h(\vb{x}). Then the amplitude of Ψn\Psi_n adjusts itself such that its respective knk_n never leaves the real axis. Once a mode is lasing, hole burning makes it harder for any other modes to activate, since they must compete for the carrier supply D0D_0.

References

  1. L. Ge, Y.D. Chong, A.D. Stone, Steady-state ab initio laser theory: generalizations and analytic results, 2010, American Physical Society.