diff options
-rw-r--r-- | .gitignore | 2 | ||||
-rw-r--r-- | atom.py | 158 | ||||
-rw-r--r-- | crystal.py | 138 | ||||
-rw-r--r-- | density.py | 198 | ||||
-rw-r--r-- | eigen.py | 187 | ||||
-rw-r--r-- | element.py | 145 | ||||
-rw-r--r-- | main.py | 127 | ||||
-rw-r--r-- | visualize.py | 76 | ||||
-rw-r--r-- | xc.py | 196 |
9 files changed, 1227 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..b0204ef --- /dev/null +++ b/.gitignore @@ -0,0 +1,2 @@ +/__pycache__/* +/result.csv @@ -0,0 +1,158 @@ +from math import * +from scipy.special import erf, sph_harm, eval_genlaguerre + +import numpy as np + +import element + + +# Atomic Coulomb potential, modelled using HGH pseudopotentials. +# See https://arxiv.org/abs/cond-mat/9803286 for details. +class Atom: + def __init__(self, s, symbol, pos): + self.symbol = symbol + self.params = element.Element(symbol) # get element data + self.position = pos + + # Set up local grid in spherical coordinates + self.r = np.zeros((s.Nres, s.Nres, s.Nres)) + self.theta = np.zeros((s.Nres, s.Nres, s.Nres)) + self.phi = np.zeros((s.Nres, s.Nres, s.Nres)) + for i in range(s.Nres): + for j in range(s.Nres): + for k in range(s.Nres): + x = s.rx[i, j, k] + y = s.ry[i, j, k] + z = s.rz[i, j, k] + + r = sqrt((x - pos[0])**2 + (y - pos[1])**2 + (z - pos[2])**2) + if r == 0: + theta = 0 + phi = 0 + else: + theta = acos((z - pos[2]) / r) + phi = atan2((y - pos[1]), (x - pos[0])) + + self.r[i, j, k] = r + self.theta[i, j, k] = theta + self.phi[i, j, k] = phi + + # Initialize and cache orbitals for nonlocal potential contribution + self.orbitals = {} + for l in range(0, 3): + self.orbitals[l] = {} + for i in range(1, 4): + p = self.get_projector(l, i) + self.orbitals[l][i] = {} + for m in range(-l, l + 1): + Y = self.cubic_harmonic(m, l) + self.orbitals[l][i][m] = p * Y + + + # Local potential representing short-range interactions. + # This is Eq.(1), but without the long-range erf-term: + def get_local_potential(self): + V = np.zeros_like(self.r) + + rr = self.r / self.params.rloc # relative r + for i in range(4): + V += self.params.Cloc[i] * rr**(2 * i) * np.exp(-0.5 * rr**2) + + return V + + + # The local erf-term decays as 1/r, which is problematic for periodicity. + # Instead, we replace it with a Hartree potential from a Gaussian charge. + # This is exact: multiply first term of Eq.(5) by g^2 (from Poisson). + def get_local_density(self): + alpha = 0.5 / self.params.rloc**2 + rho = 4 * alpha**(3/2) * np.exp(-alpha * self.r**2) / sqrt(pi) + + # Normalize in spherical coordinates: 4pi int rho(r) r^2 dr = Zion + rho *= self.params.Zion / (4 * pi) + return rho + + + # Given a psi in real space, apply nonlocal potential by integration + # Vpsi = sum_{lijm} |p_i> h_{ij} <p_j | psi> + def apply_nonlocal_potential(self, psi): + Vpsi = np.zeros_like(psi) + + # Note that these if-statements provide a significant speedup + for l in range(0, 3): + if self.params.rl[l] != 0: + for i in range(1, 4): + for j in range(1, 4): + if self.params.h[l][i][j] != 0: + for m in range(-l, l + 1): + # Inner product normalization is handled by caller + ip = np.vdot(self.orbitals[l][j][m], psi) + Vpsi += self.orbitals[l][i][m] * self.params.h[l][i][j] * ip + + return Vpsi + + + # Calculate projectors p_i^l(r) for nonlocal potential, see Eq.(3) + def get_projector(self, l, i): + p = np.zeros_like(self.r) + + if self.params.rl[l] != 0: + p = sqrt(2) * self.r**(l + 2 * (i - 1)) + p *= np.exp(-0.5 * (self.r / self.params.rl[l])**2) + p /= self.params.rl[l]**(l + 0.5 * (4 * i - 1)) + p /= sqrt(gamma(l + 0.5 * (4 * i - 1))) + + return p + + + # Guess this atom's electron density (to initialize main DFT loop) + def guess_density(self): + # We choose a spherical gaussian with standard deviation sigma + sigma = 1 + rho = (sqrt(2 / pi) / sigma**3) * np.exp(- 0.5 * self.r**2 / sigma**2) + + # Normalize in spherical coordinates: 4pi int rho(r) r^2 dr = Zion + rho /= self.params.Zion / (4 * pi) + return rho + + + # Guess this atom's eigenstates (to initialize eigensolver). + # We simply choose hydrogen orbitals, without any modifications: + def guess_orbitals(self, Norb): + psis = [] + for n in range(1, 4): + rho = 2 * self.r / n + for l in range(0, n): + for m in range(-l, l + 1): + psi = self.cubic_harmonic(m, l) + psi *= np.exp(-0.5 * rho) * rho**l + psi *= eval_genlaguerre(n - l - 1, 2 * l + 1, rho) + psis.append(psi) + + return psis[0 : Norb] + + + # Use cubic harmonics instead of spherical harmonics. This makes no + # physical difference, but it avoids confusion when visualizing. + def cubic_harmonic(self, m, l): + # Note that phi and theta are swapped according to SciPy + Yp = sph_harm( abs(m), l, self.phi, self.theta) + Yn = sph_harm(-abs(m), l, self.phi, self.theta) + + f = np.zeros_like(self.r) + if m == -3: + f = (1 / sqrt(2)) * (Yn - Yp) + if m == -2: + f = (1j / sqrt(2)) * (Yn - Yp) + if m == -1: + f = (1 / sqrt(2)) * (Yn - Yp) + if m == 0: + f = Yp + if m == 1: + f = (1j / sqrt(2)) * (Yn + Yp) + if m == 2: + f = (1 / sqrt(2)) * (Yn + Yp) + if m == 3: + f = (1j / sqrt(2)) * (Yn + Yp) + + return np.real(f) diff --git a/crystal.py b/crystal.py new file mode 100644 index 0000000..58a1cee --- /dev/null +++ b/crystal.py @@ -0,0 +1,138 @@ +from math import * + +import numpy as np + + +# Grid generator for direct and reciprocal space +class UnitCell: + def __init__(self, N, basis): + self.N = N + self.d = basis / N # displacement basis of grid points + + + # Generate NxNxN grid to represent functions inside the cell + def grid_points(self): + gx = np.zeros((self.N, self.N, self.N)) + gy = np.zeros_like(gx) + gz = np.zeros_like(gx) + + if self.N % 2 == 0: + ns = range(-self.N // 2, self.N // 2) + else: + ns = range(-(self.N - 1) // 2, (self.N - 1) // 2 + 1) + + for i in range(self.N): + for j in range(self.N): + for k in range(self.N): + v = ns[i] * self.d[0] + ns[j] * self.d[1] + ns[k] * self.d[2] + gx[i, j, k] = v[0] + gy[i, j, k] = v[1] + gz[i, j, k] = v[2] + + return gx, gy, gz + + + # Volume of smallest parallelepiped representable on this grid + def differential_volume(self): + dV = np.dot(self.d[0], np.cross(self.d[1], self.d[2])) + return abs(dV) + + + +# Base class for periodic structures, don't use it directly +class Crystal: + def __init__(self, N, basis): + self.a = basis + self.b = self.get_reciprocal_basis() + self.cell_direct = UnitCell(N, self.a) + self.cell_fourier = UnitCell(N, self.b * N) + + + def get_reciprocal_basis(self): + V = np.dot(self.a[0], np.cross(self.a[1], self.a[2])) + b1 = (2 * pi / V) * np.cross(self.a[1], self.a[2]) + b2 = (2 * pi / V) * np.cross(self.a[2], self.a[0]) + b3 = (2 * pi / V) * np.cross(self.a[0], self.a[1]) + return np.array([b1, b2, b3]) + + + def get_grid_direct(self): + rx, ry, rz = self.cell_direct.grid_points() + dr = self.cell_direct.differential_volume() + return rx, ry, rz, dr + + + def get_grid_fourier(self): + qx, qy, qz = self.cell_fourier.grid_points() + dq = self.cell_fourier.differential_volume() + return qx, qy, qz, dq + + + # Convert sequence of letters to coordinates for band structure plots. + # The letters' meanings are stored in a dictionary self.bz_points. + def get_brillouin_zone_path(self, chars): + path = [] + for c in chars: + k = self.bz_points[c] # should probably catch KeyError here + p = k[0] * self.b[0] + k[1] * self.b[1] + k[2] * self.b[2] + path.append(p) + + return path + + + +# Derived class for simple cubic (sc) crystals +class CubicSimple(Crystal): + def __init__(self, N, a): + a1 = np.array((a, 0, 0)) + a2 = np.array((0, a, 0)) + a3 = np.array((0, 0, a)) + super().__init__(N, np.array([a1, a2, a3])) + + # Taken from http://lampx.tugraz.at/~hadley/ss1/bzones/sc.php + bz_points = { + "G" : (0, 0, 0), + "R" : (0.5, 0.5, 0.5), + "X" : (0, 0.5, 0), + "M" : (0.5, 0.5, 0) + } + + + +# Derived class for body-centered cubic (bcc) crystals +class CubicBodyCentered(Crystal): + def __init__(self, N, a): + a1 = np.array((-a/2, a/2, a/2)) + a2 = np.array(( a/2, -a/2, a/2)) + a3 = np.array(( a/2, a/2, -a/2)) + super().__init__(N, np.array([a1, a2, a3])) + + # Taken from http://lampx.tugraz.at/~hadley/ss1/bzones/bcc.php + bz_points = { + "G" : ( 0, 0, 0), + "H" : (-0.5, 0.5, 0.5), + "P" : ( 0.25, 0.25, 0.25), + "N" : ( 0, 0.5, 0) + } + + + +# Derived class for face-centered cubic (fcc) crystals +class CubicFaceCentered(Crystal): + def __init__(self, N, a): + a1 = np.array((0, a/2, a/2)) + a2 = np.array((a/2, 0, a/2)) + a3 = np.array((a/2, a/2, 0)) + super().__init__(N, np.array([a1, a2, a3])) + + # Taken from http://lampx.tugraz.at/~hadley/ss1/bzones/fcc.php + bz_points = { + "G" : (0, 0, 0), + "X" : (0, 0.5, 0.5), + "L" : (0.5, 0.5, 0.5), + "W" : (0.25, 0.75, 0.5), + "U" : (0.25, 0.625, 0.625), + "K" : (0.375, 0.75, 0.375) + } + + diff --git a/density.py b/density.py new file mode 100644 index 0000000..0162baf --- /dev/null +++ b/density.py @@ -0,0 +1,198 @@ +from math import * +from itertools import permutations + +import numpy as np +import numpy.fft +import numpy.linalg + +import eigen +import xc + + +# Get electron density by filling orbitals with electrons +def get_density(psis, Nele): + rho = np.zeros_like(psis[0], dtype="float64") + for n in range(Nele): + rho += abs(psis[n // 2])**2 + return rho + + +# Given a density, calculate the Hartree (Coulomb) potential +def get_hartree_potential(s, rho_r): + rho_q = np.fft.fftn(rho_r) + + V_q = np.zeros_like(rho_q) + for i in range(s.Nres): + for j in range(s.Nres): + for k in range(s.Nres): + # Ignore the q=0 component, which gives a constant shift. + # This makes the cell neutral, eliminating long-range effects. + if s.q2[i, j, k] != 0: + V_q[i, j, k] = 4 * pi * rho_q[i, j, k] / s.q2[i, j, k] + V_r = np.fft.ifftn(V_q) + + return np.real(V_r) + + +# Pulay mixing: try this one weird trick to accelerate your convergence! +# Linearly combine several old densities to get a new density, +# which is hopefully closer to the self-consistent optimum. +def mix_densities(fhist, Rhist): + # Number of old functions to combine + Nmix = min(5, max(2, len(fhist))) + + # We need at least two old densities to work with. + # On the first SCF iteration, we return the raw output density. + if len(fhist) < Nmix: + return fhist[-1] + Rhist[-1] + + # Number of initial elements to ignore in the history + offset = len(fhist) - Nmix + + # Set up the system matrix + A = np.zeros((Nmix, Nmix), dtype=fhist[-1].dtype) + for r in range(Nmix): + for c in range(Nmix): + A[r, c] = np.vdot(Rhist[offset + r], Rhist[offset + c]) + + # Solve the system using matrix inversion, see for example + # Eq.(38) in https://doi.org/10.1103/PhysRevB.54.11169 + try: + Ainv = np.linalg.inv(A) + alphas = Ainv.sum(axis=1) + alphas /= alphas.sum() + except np.linalg.LinAlgError: # A is singular + alphas = np.zeros(Nmix) + alphas[-1] = 1.0 + + # Construct next function as a linear combination of history. + # Beta "nudges" result, to prevent getting stuck in a subspace. + beta = 0.1 + f = np.zeros_like(fhist[-1]) + for n in range(Nmix): + f += alphas[n] * (fhist[offset + n] + beta * Rhist[offset + n]) + + return f + + +# Generate list of k-points that nicely covers the first Brillouin zone +def sample_brillouin_zone(s): + N = s.bzmesh + # Generate N0xN1xN2 k-points using Monkhorst-Pack scheme + kpoints = [] + for n0 in range(1, N[0] + 1): + for n1 in range(1, N[1] + 1): + for n2 in range(1, N[2] + 1): + t0 = (2 * n0 - N[0] - 1) / (2 * N[0]) * s.crystal.b[0] + t1 = (2 * n1 - N[1] - 1) / (2 * N[1]) * s.crystal.b[1] + t2 = (2 * n2 - N[2] - 1) / (2 * N[2]) * s.crystal.b[2] + kpoints.append(t0 + t1 + t2) + + # Thanks to symmetry, most of these k-points are redundant. + # which we will exploit to greatly improve performance. + + # This can be done much better; these are my messy hacks. + + # Remember for each point, what it is equivalent to (maybe only itself) + equivto = list(range(len(kpoints))) + for i in range(len(kpoints)): + # Cubic crystal symmetry: + # Permute Cartesian components to find equivalences (this feels dirty) + perms = set(permutations(tuple(abs(kpoints[i])))) + for j in range(0, i): # only consider previous points + if tuple(abs(kpoints[j])) in perms: + equivto[i] = j + break + + # Each k gets a weight based on how many equivalent points it has + weights = [] + for i in range(len(kpoints)): + weights.append(equivto.count(i)) + # Delete redundant points, yielding a >75% reduction in computation + for i in reversed(range(len(kpoints))): + if weights[i] == 0: + del kpoints[i] + del weights[i] + + return kpoints, weights + + +# Static local potential contribution, from the atoms in the cell +def get_local_external_potential(s, Nele): + Vloc_r = np.zeros((s.Nres, s.Nres, s.Nres)) + rhon_r = np.zeros((s.Nres, s.Nres, s.Nres)) + for a in s.atoms: + Vloc_r += a.get_local_potential() + rhon_r += a.get_local_density() + + # Coulomb potential from ionic compensation charge + rhon_r /= np.sum(rhon_r) * s.dr / Nele # ensure normalization + Vion_r = get_hartree_potential(s, -rhon_r) + + return Vloc_r + Vion_r + + +# The whole point of DFT: iteratively find the self-consistent electron density +def get_selfconsistent_density(s, thresh=1e-8): + # Initial guess for mean electron density + rho = np.zeros((s.Nres, s.Nres, s.Nres)) + Nele = 0 # number of electrons + for a in s.atoms: + rho += a.guess_density() + Nele += a.params.Zion + rho /= np.sum(rho) * s.dr / Nele # ensure normalization + + # This is the "external potential" we use as a base (sans nonlocality) + Vext = get_local_external_potential(s, Nele) + + # Get weighted set of k-points in first Brillouin zone + ksamples, kweights = sample_brillouin_zone(s) + + # Each k-point gives a certain density contribution + rhos = [] + for k in ksamples: + rhos.append(rho.copy()) + + # Histories for Pulay density mixing + rho_hist = [] + residue_hist = [] + # You could do Pulay mixing separately for each k-point's density, + # but according to my tests, that makes no meaningful difference. + + cycles = 0 + improv = 1 + # Main self-consistency loop, where the magic happens + while improv > thresh: + cycles += 1 + print("Self-consistency cycle {} running...".format(cycles)) + + # Calculate additional potential from mean density + Vh = get_hartree_potential(s, rho) + #Vx = xc.get_x_potential_gga_lb(s, rho) + #Vc = xc.get_c_potential_gga_lyp(s, rho) + #Vxc = xc.get_xc_potential_lda_teter93(s, rho) + Vxc = xc.get_x_potential_lda_slater(s, rho) + Veff = Vext + Vh + Vxc + + for i in range(len(ksamples)): + prefix = " ({}/{}) ".format(i + 1, len(ksamples)) + energies, psis_r, psis_q = eigen.solve_kohnsham_equation(s, Veff, ksamples[i], prefix) + rhos[i] = get_density(psis_r, Nele) + + # Calculate new average density from orbitals + rho_new = np.zeros((s.Nres, s.Nres, s.Nres)) + for i in range(len(rhos)): + rho_new += kweights[i] * rhos[i] + rho_new /= sum(kweights) + + # Get next cycle's input density from Pulay mixing + rho_hist.append(rho) + residue_hist.append(rho_new - rho) + rho = mix_densities(rho_hist, residue_hist) + + # Use the norm of the residual as a metric for convergence + improv = np.sum(residue_hist[-1]**2) * s.dr / Nele**2 + print(" Cycle {} done, improvement {:.2e}".format(cycles, improv)) + + print("Found self-consistent electron density in {} cycles".format(cycles)) + return rho, Veff diff --git a/eigen.py b/eigen.py new file mode 100644 index 0000000..1dbb2a9 --- /dev/null +++ b/eigen.py @@ -0,0 +1,187 @@ +from math import * + +import numpy as np +import numpy.fft + +import visualize + + +# Normalize wavefunction with respect to volume element dV +def normalize(state, dV): + norm2 = np.vdot(state, state) * dV + return state / sqrt(abs(norm2)) + + +# Gram-Schmidt orthonormalization with respect to dV +def orthonormalize(basis, dV): + for n in range(len(basis)): + psi = basis[n] + + for i in range(n): + psi -= basis[i] * np.vdot(basis[i], psi) * dV + + basis[n] = normalize(psi, dV) + + return basis + + +# Zero all components with kinetic energy less than Ecut +def enforce_cutoff(s, psis_q, kq2): + for i in range(s.Nres): + for j in range(s.Nres): + for k in range(s.Nres): + if kq2[i, j, k] > 2 * s.Ecut: + for psi_q in psis_q: + psi_q[i, j, k] = 0 + return orthonormalize(psis_q, s.dq) + + +# Apply the Kohn-Sham Hamiltonian to a normalized state psi +def apply_hamiltonian(s, psi_q, Veff_r, kq2): + # Apply kinetic energy in q-domain + Tpsi_q = 0.5 * kq2 * psi_q + + # Apply local+nonlocal potential in r-domain + psi_r = np.fft.ifftn(psi_q) + # We don't normalize: the iFFT ensures a correctly normalized result + Vpsi_r = Veff_r * psi_r # local part + for a in s.atoms: # nonlocal part + Vnon_r = a.apply_nonlocal_potential(psi_r) * s.dr + Vpsi_r += Vnon_r + Vpsi_q = np.fft.fftn(Vpsi_r) + + return Tpsi_q + Vpsi_q + + +# Resisual vector R, which the eigensolver tries to minimize +def get_residual(s, psi_q, Hpsi_q, kq2): + ene = np.vdot(psi_q, Hpsi_q) * s.dq # assuming normalization + R_q = Hpsi_q - ene * psi_q + + # Calculate preconditioned residual PR for faster convergence: + # The ideal PR satisfies PR = (H - ene)^-1 R, such that (H - ene) PR = R. + # This operator (H - ene) is hard to invert, so we approximate it using + # the kinetic energy only: -0.5 \nabla^2 PR = R (the Poisson equation). + PR_q = 2 * R_q / (kq2 + 1) + # This is an even rougher approximation, but it works well enough. + + return PR_q + + +# One iteration of the block Davidson eigensolver algorithm +def diagonalize_subspace(s, psis, V, kq2): + # Apply Hamiltonian to psis and cache results + Hbasis = [] + for n in range(len(psis)): + Hbasis.append(apply_hamiltonian(s, psis[n], V, kq2)) + + # Calculate corresponding residuals + resids = [] + for n in range(len(psis)): + R = get_residual(s, psis[n], Hbasis[n], kq2) + resids.append(R) + + # Augment the input basis (psis) with the residuals + basis = psis + resids + basis = enforce_cutoff(s, basis, kq2) + + Ndim = len(basis) + + # Apply Hamiltonian to orthonormalized residuals and cache results + for n in range(len(psis), Ndim): + Hbasis.append(apply_hamiltonian(s, basis[n], V, kq2)) + + # Subspace Hamiltonian matrix with elements <basis[i] | H | basis[j]> + Hsub = np.zeros((Ndim, Ndim), dtype="complex128") + # Exploit Hermiticity: only calculate the diagonal and upper triangle, + # then copy the elements from the upper to the lower triangle. + for r in range(Ndim): + for c in range(r, Ndim): + Hsub[r, c] = np.vdot(basis[r], Hbasis[c]) * s.dq + for r in range(Ndim): + for c in range(0, r): + Hsub[r, c] = np.conj(Hsub[c, r]) + + # Find the eigenvectors and eigenvalues of Hsub + evals, evecs = np.linalg.eigh(Hsub) + + # Express the eigenvectors in the original basis (input psis) + result = [] + for n in range(Ndim // 2): + psi = np.zeros((s.Nres, s.Nres, s.Nres), dtype="complex128") + for b in range(Ndim): + psi += basis[b] * evecs[b, n] + result.append(psi) + + return evals, result + + +# Small optimization: cache |k+q|^2 ahead of time +def cache_kinetic_factor(s, kpoint): + kq2 = np.zeros((s.Nres, s.Nres, s.Nres)) + for i in range(s.Nres): + for j in range(s.Nres): + for k in range(s.Nres): + q = np.array((s.qx[i, j, k], s.qy[i, j, k], s.qz[i, j, k])) + kq = kpoint + q + kq2[i, j, k] = np.dot(kq, kq) + return kq2 + + +# Initial guess from atoms' individual (approximate) orbitals +def guess_orbitals(s): + psis_q = [] + for a in s.atoms: + psis_r = a.guess_orbitals(s.Norb) + + # Convert guesses to Fourier space + for psi_r in psis_r: + psi_q = np.fft.fftn(psi_r) + psis_q.append(psi_q) + + return orthonormalize(psis_q, s.dq) + + +# Get lowest eigenvalues and eigenstates of Kohn-Sham equation +def solve_kohnsham_equation(s, V, k, prefix="", thresh=1e-4): + kq2 = cache_kinetic_factor(s, k) + + # Initialize psis, which we will refine shortly + psis_q = guess_orbitals(s) + + print(prefix + "Eigensolver cycle 1 running...") + cycles = 0 + improv = 1 + energy_old = 0 + # Iterative eigensolver loop + while improv > thresh: + cycles += 1 + + # Eliminate high-frequency noise (little effect in practice) + psis_q = enforce_cutoff(s, psis_q, kq2) + + # Refine eigenstates using one step of the block Davidson method + energies, psis_q = diagonalize_subspace(s, psis_q, V, kq2) + + # To measure progress, we look at the change of (N+1)th eigenvalue, + # where N is the number of bands we are interested in converging. + energy_new = energies[s.Neig] + improv = abs(energy_new - energy_old) / abs(energy_new) + energy_old = energy_new + + # Clear line and (re)print progress information + print("\033[A\033[2K" + prefix, end="") + print("Eigensolver cycle {} done".format(cycles), end="") + if cycles > 1: + print(", improvement {:.2e}".format(improv), end="") + print("") + + # Convert psis to real space and normalize them there + psis_r = [] + for n in range(len(psis_q)): + psi_r = np.fft.ifftn(psis_q[n]) + psis_r.append(normalize(psi_r, s.dr)) + + # energies is a NumPy array right now + return energies.tolist(), psis_r, psis_q + diff --git a/element.py b/element.py new file mode 100644 index 0000000..a8111ad --- /dev/null +++ b/element.py @@ -0,0 +1,145 @@ +from math import * + + +# Interface to the HGH pseudopotential parameters. +# See https://arxiv.org/abs/cond-mat/9803286 +class Element: + def __init__(self, symbol): + # Get raw data from the table below + global elements + el = elements[symbol] + + self.Zion = el[0] + self.rloc = el[1] + self.Cloc = [el[2], el[3], el[4], el[5]] + self.rl = [el[6], el[10], el[14]] + + self.h = {} + for l in range(0, 3): + self.h[l] = {} + for i in range(1, 4): + self.h[l][i] = {} + # Only the diagonal h-values are explicitly given + self.h[l][i][i] = el[6 + 4 * l + i] + + # Calculate the off-diagonal h-values, see Eqs.(20)-(28) + self.h[0][1][2] = -(1/2) * sqrt( 3/ 5) * self.h[0][2][2] + self.h[0][1][3] = (1/2) * sqrt( 5/ 21) * self.h[0][3][3] + self.h[0][2][3] = -(1/2) * sqrt(100/ 63) * self.h[0][3][3] + self.h[1][1][2] = -(1/2) * sqrt( 5/ 7) * self.h[1][2][2] + self.h[1][1][3] = (1/6) * sqrt( 35/ 11) * self.h[1][3][3] + self.h[1][2][3] = -(1/6) * sqrt(196/ 11) * self.h[1][3][3] + self.h[2][1][2] = -(1/2) * sqrt( 7/ 9) * self.h[2][2][2] + self.h[2][1][3] = (1/2) * sqrt( 63/143) * self.h[2][3][3] + self.h[2][2][3] = -(1/2) * sqrt(324/143) * self.h[2][3][3] + + # Mirror around diagonal, see Eq.(29) + for l in range(0, 3): + for i in range(1, 4): + for j in range(1, i): + self.h[l][i][j] = self.h[l][j][i] + + +# Raw HGH pseudopotential parameters for semiconductor materials. +# See https://arxiv.org/abs/cond-mat/9803286 +# +# Indices: Meanings: +# 0 Zion +# 1 2 3 4 5 rloc C1 C2 C3 C4 +# 6 7 8 9 r0 h0_1 h0_2 h0_3 +# 10 11 12 13 r1 h1_1 h1_2 h1_3 +# 14 15 16 17 r2 h2_1 h2_2 h2_3 +elements = { + "B" : [3, + 0.433930, -5.578642, 0.804251, 0.000000, 0.000000, + 0.373843, 6.233928, 0.000000, 0.000000, + 0.360393, 0.000000, 0.000000, 0.000000, + 0.000000, 0.000000, 0.000000, 0.000000], + "C" : [4, + 0.348830, -8.513771, 1.228432, 0.000000, 0.000000, + 0.304553, 9.522842, 0.000000, 0.000000, + 0.232677, 0.000000, 0.000000, 0.000000, + 0.000000, 0.000000, 0.000000, 0.000000], + "N" : [5, + 0.289179, -12.234820, 1.766407, 0.000000, 0.000000, + 0.256605, 13.552243, 0.000000, 0.000000, + 0.270134, 0.000000, 0.000000, 0.000000, + 0.000000, 0.000000, 0.000000, 0.000000], + "O" : [6, + 0.247621, -16.580318, 2.395701, 0.000000, 0.000000, + 0.221786, 18.266917, 0.000000, 0.000000, + 0.256829, 0.000000, 0.000000, 0.000000, + 0.000000, 0.000000, 0.000000, 0.000000], + "Al" : [3, + 0.450000, -8.491351, 0.000000, 0.000000, 0.000000, + 0.460104, 5.088340, 2.679700, 0.000000, + 0.536744, 2.193438, 0.000000, 0.000000, + 0.000000, 0.000000, 0.000000, 0.000000], + "Si" : [4, + 0.440000, -7.336103, 0.000000, 0.000000, 0.000000, + 0.422738, 5.906928, 3.258196, 0.000000, + 0.484278, 2.727013, 0.000000, 0.000000, + 0.000000, 0.000000, 0.000000, 0.000000], + "P" : [5, + 0.430000, -6.654220, 0.000000, 0.000000, 0.000000, + 0.389803, 6.842136, 3.856693, 0.000000, + 0.440796, 3.282606, 0.000000, 0.000000, + 0.000000, 0.000000, 0.000000, 0.000000], + "S" : [6, + 0.420000, -6.554492, 0.000000, 0.000000, 0.000000, + 0.361757, 7.905303, 4.471698, 0.000000, + 0.405285, 3.866579, 0.000000, 0.000000, + 0.000000, 0.000000, 0.000000, 0.000000], + "Zn" : [2, + 0.570000, 0.000000, 0.000000, 0.000000, 0.000000, + 0.640712, 2.088557, -0.218270, -0.941317, + 0.967605, 0.163546, -0.227086, 0.000000, + 1.330352, 0.010486, 0.000000, 0.000000], + "Ga" : [3, + 0.560000, 0.000000, 0.000000, 0.000000, 0.000000, + 0.610791, 2.369325, -0.249015, -0.551796, + 0.704596, 0.746305, -0.513132, 0.000000, + 0.982580, 0.075437, 0.000000, 0.000000], + "Ge" : [4, + 0.540000, 0.000000, 0.000000, 0.000000, 0.000000, + 0.493743, 3.826891, 1.100231, -1.344218, + 0.601064, 1.362518, -0.627370, 0.000000, + 0.788369, 0.191205, 0.000000, 0.000000], + "As" : [5, + 0.520000, 0.000000, 0.000000, 0.000000, 0.000000, + 0.456400, 4.560761, 1.692389, -1.373804, + 0.550562, 1.812247, -0.646727, 0.000000, + 0.685283, 0.312373, 0.000000, 0.000000], + "Se" : [6, + 0.510000, 0.000000, 0.000000, 0.000000, 0.000000, + 0.432531, 5.145131, 2.052009, -1.369203, + 0.472473, 2.858806, -0.590671, 0.000000, + 0.613420, 0.434829, 0.000000, 0.000000], + "Cd" : [2, + 0.625000, -1.796838, 0.000000, 0.000000, 0.000000, + 0.828465, 1.485292, -0.424753, -0.407986, + 0.972873, 0.469208, -0.448111, 0.000000, + 1.240949, 0.065412, 0.000000, 0.000000], + "In" : [3, + 0.610000, 2.865777, 0.000000, 0.000000, 0.000000, + 0.770602, 1.256194, -0.397255, -0.278329, + 0.858132, 0.494459, -0.380789, 0.000000, + 1.088691, 0.129208, 0.000000, 0.000000], + "Sn" : [4, + 0.605000, 4.610912, 0.000000, 0.000000, 0.000000, + 0.663544, 1.648791, -0.141974, -0.576546, + 0.745865, 0.769355, -0.445070, 0.000000, + 0.944459, 0.225115, 0.000000, 0.000000], + "Sb" : [5, + 0.590000, 6.680228, 0.000000, 0.000000, 0.000000, + 0.597684, 1.951477, 0.037537, -0.786631, + 0.672122, 0.970313, -0.466731, 0.000000, + 0.856557, 0.300103, 0.000000, 0.000000], + "Te" : [6, + 0.575000, 9.387085, 0.000000, 0.000000, 0.000000, + 0.556456, 2.046890, -0.029333, -0.881119, + 0.615262, 1.033478, -0.481172, 0.000000, + 0.805101, 0.317411, 0.000000, 0.000000], +} + + @@ -0,0 +1,127 @@ +import csv +import math + +import numpy as np + +import atom +import crystal +import density +import eigen + + +class Settings: + pass + + +# Set up the object "s" that contains all settings for the run. +# After this function, "s" is not modified. Adjust settings here. +def initialize(): + s = Settings() + + # Resolution: store functions on an NxNxN grid + s.Nres = 16 + + # Lattice constant of conventional cell, in Bohr radii + #a = 6.7463 # C + a = 10.261 # Si + #a = 10.298 # GaP + #a = 10.683 # Ge/GaAs + #a = 11.449 # InAs + + # Crystal structure, choose Cubic{Simple,BodyCentered,FaceCentered} + s.crystal = crystal.CubicFaceCentered(s.Nres, a) + # Grid dimensions for k-point sampling of Brillouin zone + s.bzmesh = (3, 3, 3) + + # Sequence of Brillouin zone symmetry points for band structure plot + s.bzpath = "LGXWULWXUG" + # Number of substeps to take between two symmetry points in bzpath + s.Nbzsub = 10 + + # Number of orbitals to use per atom (but not necessarily converge) + s.Norb = 8 + # Number of total Kohn-Sham eigenstates to converge + s.Neig = 12 + + # Elements and positions of atoms in the unit cell. + # Positions are expressed in the cell basis (a1,a2,a3). + atoms = [ + ("Si", (-0.125, -0.125, -0.125)), + ("Si", ( 0.125, 0.125, 0.125)), + ] + + # Plane-wave cutoff energy in Hartree + s.Ecut = 50 + + # Finalize the "s" object. Avoid editing below this line. + + # Get the grid point coordinates in direct and Fourier space + s.rx, s.ry, s.rz, s.dr = s.crystal.get_grid_direct() + s.qx, s.qy, s.qz, s.dq = s.crystal.get_grid_fourier() + # Remember to call fftshift before plotting! + s.qx = np.fft.ifftshift(s.qx) + s.qy = np.fft.ifftshift(s.qy) + s.qz = np.fft.ifftshift(s.qz) + + # For convenience + s.r2 = s.rx**2 + s.ry**2 + s.rz**2 + s.q2 = s.qx**2 + s.qy**2 + s.qz**2 + + # Place the atoms on the grid as specified in "atoms" + s.atoms = [] + basis = s.crystal.a + for a in atoms: + pos = a[1][0] * basis[0] + a[1][1] * basis[1] + a[1][2] * basis[2] + s.atoms.append(atom.Atom(s, a[0], pos)) + + return s + + +def main(): + # Get settings object "s" + s = initialize() + + # It would be madness to try to converge the electron density + # for all band structure k-points at the same time, so instead + # we converge it for a small set and then assume it's fixed. + rho, Veff = density.get_selfconsistent_density(s) + print("\nCalculating band structure with fixed electron density") + + # Get list of positions of high-symmetry k-points + ksteps = s.crystal.get_brillouin_zone_path(s.bzpath) + Nsteps = len(ksteps) - 1 + + # Total distance in k-space, used for first CSV column + kdistance = 0.0 + + # Open output CSV file for writing + file = open("result.csv", "w", newline="") + csvw = csv.writer(file, quoting=csv.QUOTE_MINIMAL) + + # Loop over symmetry points, except last one + for i in range(Nsteps): + print("Band calculation part {}/{} running...".format(i + 1, Nsteps)) + + # Subdivide path between this point and next point + if i < Nsteps - 1: + ksubs = np.linspace(ksteps[i], ksteps[i + 1], s.Nbzsub, endpoint=False) + else: # include endpoint in last iteration + ksubs = np.linspace(ksteps[i], ksteps[i + 1], s.Nbzsub + 1, endpoint=True) + + # Loop over points on subdivided path + for j, kp in enumerate(ksubs): + # Solve Kohn-Sham equation for this k-point, with fixed Veff + pf = " ({}/{}) ".format(j + 1, len(ksubs)) + energies, psis_r, psis_q = eigen.solve_kohnsham_equation(s, Veff, kp, pf) + + csvw.writerow([kdistance] + energies[0 : s.Neig]) + + # Keep track of how far we moved in k-space + kd = np.linalg.norm(ksteps[i + 1] - ksteps[i]) + kdistance += kd / s.Nbzsub + + file.close() + + +if __name__ == "__main__": + main() diff --git a/visualize.py b/visualize.py new file mode 100644 index 0000000..6746458 --- /dev/null +++ b/visualize.py @@ -0,0 +1,76 @@ +import numpy as np +import matplotlib.pyplot as plt + + +# Some messy visualization functions I hacked together + + +def cross_r(s, fs): + i = s.Nres // 2 + + # To visualize the diagonals + signs = np.array([-1] * i + [1] * i) + + xs = s.rx[:, i, i] + ys = s.ry[i, :, i] + zs = s.rz[i, i, :] + + for f in fs: + plt.plot(xs, f[:, i, i]) + |