summaryrefslogtreecommitdiff
path: root/density.py
blob: 0162baf4e17591df43755e3c4ff0e90944bed51c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
from math import *
from itertools import permutations

import numpy as np
import numpy.fft
import numpy.linalg

import eigen
import xc


# Get electron density by filling orbitals with electrons
def get_density(psis, Nele):
    rho = np.zeros_like(psis[0], dtype="float64")
    for n in range(Nele):
        rho += abs(psis[n // 2])**2
    return rho


# Given a density, calculate the Hartree (Coulomb) potential
def get_hartree_potential(s, rho_r):
    rho_q = np.fft.fftn(rho_r)

    V_q = np.zeros_like(rho_q)
    for i in range(s.Nres):
        for j in range(s.Nres):
            for k in range(s.Nres):
                # Ignore the q=0 component, which gives a constant shift.
                # This makes the cell neutral, eliminating long-range effects.
                if s.q2[i, j, k] != 0:
                    V_q[i, j, k] = 4 * pi * rho_q[i, j, k] / s.q2[i, j, k]
    V_r = np.fft.ifftn(V_q)

    return np.real(V_r)


# Pulay mixing: try this one weird trick to accelerate your convergence!
# Linearly combine several old densities to get a new density,
# which is hopefully closer to the self-consistent optimum.
def mix_densities(fhist, Rhist):
    # Number of old functions to combine
    Nmix = min(5, max(2, len(fhist)))

    # We need at least two old densities to work with.
    # On the first SCF iteration, we return the raw output density.
    if len(fhist) < Nmix:
        return fhist[-1] + Rhist[-1]

    # Number of initial elements to ignore in the history
    offset = len(fhist) - Nmix

    # Set up the system matrix
    A = np.zeros((Nmix, Nmix), dtype=fhist[-1].dtype)
    for r in range(Nmix):
        for c in range(Nmix):
            A[r, c] = np.vdot(Rhist[offset + r], Rhist[offset + c])

    # Solve the system using matrix inversion, see for example
    # Eq.(38) in https://doi.org/10.1103/PhysRevB.54.11169
    try:
        Ainv = np.linalg.inv(A)
        alphas = Ainv.sum(axis=1)
        alphas /= alphas.sum()
    except np.linalg.LinAlgError: # A is singular
        alphas = np.zeros(Nmix)
        alphas[-1] = 1.0

    # Construct next function as a linear combination of history.
    # Beta "nudges" result, to prevent getting stuck in a subspace.
    beta = 0.1
    f = np.zeros_like(fhist[-1])
    for n in range(Nmix):
        f += alphas[n] * (fhist[offset + n] + beta * Rhist[offset + n])

    return f


# Generate list of k-points that nicely covers the first Brillouin zone
def sample_brillouin_zone(s):
    N = s.bzmesh
    # Generate N0xN1xN2 k-points using Monkhorst-Pack scheme
    kpoints = []
    for n0 in range(1, N[0] + 1):
        for n1 in range(1, N[1] + 1):
            for n2 in range(1, N[2] + 1):
                t0 = (2 * n0 - N[0] - 1) / (2 * N[0]) * s.crystal.b[0]
                t1 = (2 * n1 - N[1] - 1) / (2 * N[1]) * s.crystal.b[1]
                t2 = (2 * n2 - N[2] - 1) / (2 * N[2]) * s.crystal.b[2]
                kpoints.append(t0 + t1 + t2)

    # Thanks to symmetry, most of these k-points are redundant.
    # which we will exploit to greatly improve performance.

    # This can be done much better; these are my messy hacks.

    # Remember for each point, what it is equivalent to (maybe only itself)
    equivto = list(range(len(kpoints)))
    for i in range(len(kpoints)):
        # Cubic crystal symmetry:
        # Permute Cartesian components to find equivalences (this feels dirty)
        perms = set(permutations(tuple(abs(kpoints[i]))))
        for j in range(0, i): # only consider previous points
            if tuple(abs(kpoints[j])) in perms:
                equivto[i] = j
                break

    # Each k gets a weight based on how many equivalent points it has
    weights = []
    for i in range(len(kpoints)):
        weights.append(equivto.count(i))
    # Delete redundant points, yielding a >75% reduction in computation
    for i in reversed(range(len(kpoints))):
        if weights[i] == 0:
            del kpoints[i]
            del weights[i]

    return kpoints, weights


# Static local potential contribution, from the atoms in the cell
def get_local_external_potential(s, Nele):
    Vloc_r = np.zeros((s.Nres, s.Nres, s.Nres))
    rhon_r = np.zeros((s.Nres, s.Nres, s.Nres))
    for a in s.atoms:
        Vloc_r += a.get_local_potential()
        rhon_r += a.get_local_density()

    # Coulomb potential from ionic compensation charge
    rhon_r /= np.sum(rhon_r) * s.dr / Nele # ensure normalization
    Vion_r = get_hartree_potential(s, -rhon_r)

    return Vloc_r + Vion_r


# The whole point of DFT: iteratively find the self-consistent electron density
def get_selfconsistent_density(s, thresh=1e-8):
    # Initial guess for mean electron density
    rho = np.zeros((s.Nres, s.Nres, s.Nres))
    Nele = 0 # number of electrons
    for a in s.atoms:
        rho += a.guess_density()
        Nele += a.params.Zion
    rho /= np.sum(rho) * s.dr / Nele # ensure normalization

    # This is the "external potential" we use as a base (sans nonlocality)
    Vext = get_local_external_potential(s, Nele)

    # Get weighted set of k-points in first Brillouin zone
    ksamples, kweights = sample_brillouin_zone(s)

    # Each k-point gives a certain density contribution
    rhos = []
    for k in ksamples:
        rhos.append(rho.copy())

    # Histories for Pulay density mixing
    rho_hist = []
    residue_hist = []
    # You could do Pulay mixing separately for each k-point's density,
    # but according to my tests, that makes no meaningful difference.

    cycles = 0
    improv = 1
    # Main self-consistency loop, where the magic happens
    while improv > thresh:
        cycles += 1
        print("Self-consistency cycle {} running...".format(cycles))

        # Calculate additional potential from mean density
        Vh = get_hartree_potential(s, rho)
        #Vx = xc.get_x_potential_gga_lb(s, rho)
        #Vc = xc.get_c_potential_gga_lyp(s, rho)
        #Vxc = xc.get_xc_potential_lda_teter93(s, rho)
        Vxc = xc.get_x_potential_lda_slater(s, rho)
        Veff = Vext + Vh + Vxc

        for i in range(len(ksamples)):
            prefix = "    ({}/{}) ".format(i + 1, len(ksamples))
            energies, psis_r, psis_q = eigen.solve_kohnsham_equation(s, Veff, ksamples[i], prefix)
            rhos[i] = get_density(psis_r, Nele)

        # Calculate new average density from orbitals
        rho_new = np.zeros((s.Nres, s.Nres, s.Nres))
        for i in range(len(rhos)):
            rho_new += kweights[i] * rhos[i]
        rho_new /= sum(kweights)

        # Get next cycle's input density from Pulay mixing
        rho_hist.append(rho)
        residue_hist.append(rho_new - rho)
        rho = mix_densities(rho_hist, residue_hist)

        # Use the norm of the residual as a metric for convergence
        improv = np.sum(residue_hist[-1]**2) * s.dr / Nele**2
        print("    Cycle {} done, improvement {:.2e}".format(cycles, improv))

    print("Found self-consistent electron density in {} cycles".format(cycles))
    return rho, Veff