diff options
author | Prefetch | 2021-04-08 16:49:46 +0200 |
---|---|---|
committer | Prefetch | 2021-04-08 16:49:46 +0200 |
commit | 966048bd3594eac4d3398992c8ad3143e290303b (patch) | |
tree | e24f5aac65abfff9f80200ceb34f00676a82913d | |
parent | 8044008e45f87b95d7a8c9f0fce1847ceedfb09a (diff) |
Expand knowledge base, add /sources/
-rw-r--r-- | .gitignore | 3 | ||||
-rw-r--r-- | content/know/concept/cauchy-strain-tensor/index.pdc | 18 | ||||
-rw-r--r-- | content/know/concept/deutsch-jozsa-algorithm/deutsch-circuit.png | bin | 0 -> 8621 bytes | |||
-rw-r--r-- | content/know/concept/deutsch-jozsa-algorithm/deutsch-jozsa-circuit.png | bin | 0 -> 18613 bytes | |||
-rw-r--r-- | content/know/concept/deutsch-jozsa-algorithm/index.pdc | 234 | ||||
-rw-r--r-- | content/know/concept/euler-equations/index.pdc | 4 | ||||
-rw-r--r-- | content/know/concept/material-derivative/index.pdc | 8 | ||||
-rw-r--r-- | sources/know/concept/bloch-sphere/bloch.svg | 561 | ||||
-rw-r--r-- | sources/know/concept/deutsch-jozsa-algorithm/circuit.tex | 53 |
9 files changed, 866 insertions, 15 deletions
@@ -1 +1,4 @@ /public/* +/sources/**/*.aux +/sources/**/*.log +/sources/**/*.pdf diff --git a/content/know/concept/cauchy-strain-tensor/index.pdc b/content/know/concept/cauchy-strain-tensor/index.pdc index f150723..cb48377 100644 --- a/content/know/concept/cauchy-strain-tensor/index.pdc +++ b/content/know/concept/cauchy-strain-tensor/index.pdc @@ -82,7 +82,7 @@ we expand the middle term to first order in $\va{a}$: $$\begin{aligned} \va{u}(\va{x} + \va{a}) \approx \va{u}(\va{x}) + a_x \pdv{\va{u}}{x} + a_y \pdv{\va{u}}{y} + a_z \pdv{\va{u}}{z} - = \va{u}(\va{x}) + \va{a} \cdot \nabla \va{u}(\va{x}) + = \va{u}(\va{x}) + (\va{a} \cdot \nabla) \va{u}(\va{x}) \end{aligned}$$ With this, we can now define the "shift" $\delta\va{a}$ @@ -91,7 +91,7 @@ as the difference between $\va{a}$ and $\va{A}$ like so: $$\begin{aligned} \delta{\va{a}} \equiv \va{a} - \va{A} - = \va{a} \cdot \nabla \va{u}(\va{x}) + = (\va{a} \cdot \nabla) \va{u}(\va{x}) \end{aligned}$$ In index notation, we write this expression as follows, @@ -245,8 +245,8 @@ is easy to express using the displacement field $\va{u}$: $$\begin{aligned} \boxed{ \delta(\dd{\va{l}}) - = \dd{\va{l}} \cdot \nabla \va{u} - = (\nabla \vec{u})^\top \cdot \dd{\va{l}} + = (\dd{\va{l}} \cdot \nabla) \va{u} + %= (\nabla \vec{u})^\top \cdot \dd{\va{l}} } \end{aligned}$$ @@ -259,9 +259,9 @@ $$\begin{aligned} = \delta(\va{a} \cross \va{b} \cdot \va{c}) &= \delta\va{a} \cross \va{b} \cdot \va{c} + \va{a} \cross \delta\va{b} \cdot \va{c} + \va{a} \cross \va{b} \cdot \delta\va{c} \\ - &= (\va{a} \cdot \nabla\va{u}) \cross \va{b} \cdot \va{c} - + \va{a} \cross (\va{b} \cdot \nabla\va{u}) \cdot \va{c} - + \va{a} \cross \va{b} \cdot (\va{c} \cdot \nabla\va{u}) + &= (\va{a} \cdot \nabla) \va{u} \cross \va{b} \cdot \va{c} + + \va{a} \cross (\va{b} \cdot \nabla )\va{u} \cdot \va{c} + + \va{a} \cross \va{b} \cdot (\va{c} \cdot \nabla) \va{u} \end{aligned}$$ We can reorder the factors like so @@ -303,7 +303,7 @@ $$\begin{aligned} \delta(\dd{V}) = \delta(\va{c} \cdot \dd{\va{S}}) = \delta\va{c} \cdot \dd{\va{S}} + \va{c} \cdot \delta(\dd{\va{S}}) - = (\va{c} \cdot \nabla\va{u}) \cdot \dd{\va{S}} + \va{c} \cdot \delta(\dd{\va{S}}) + = (\va{c} \cdot \nabla) \va{u} \cdot \dd{\va{S}} + \va{c} \cdot \delta(\dd{\va{S}}) \end{aligned}$$ By comparing this to the previous result for $\delta(\dd{V})$, @@ -311,7 +311,7 @@ we arrive at the following equation: $$\begin{aligned} \nabla \cdot \va{u} (\va{c} \cdot \dd{\va{S}}) - = (\va{c} \cdot \nabla\va{u}) \cdot \dd{\va{S}} + \va{c} \cdot \delta(\dd{\va{S}}) + = (\va{c} \cdot \nabla) \va{u} \cdot \dd{\va{S}} + \va{c} \cdot \delta(\dd{\va{S}}) \end{aligned}$$ Since $\va{c}$ is dot-multiplied at the front of each term, diff --git a/content/know/concept/deutsch-jozsa-algorithm/deutsch-circuit.png b/content/know/concept/deutsch-jozsa-algorithm/deutsch-circuit.png Binary files differnew file mode 100644 index 0000000..04f81fe --- /dev/null +++ b/content/know/concept/deutsch-jozsa-algorithm/deutsch-circuit.png diff --git a/content/know/concept/deutsch-jozsa-algorithm/deutsch-jozsa-circuit.png b/content/know/concept/deutsch-jozsa-algorithm/deutsch-jozsa-circuit.png Binary files differnew file mode 100644 index 0000000..a43ae6a --- /dev/null +++ b/content/know/concept/deutsch-jozsa-algorithm/deutsch-jozsa-circuit.png diff --git a/content/know/concept/deutsch-jozsa-algorithm/index.pdc b/content/know/concept/deutsch-jozsa-algorithm/index.pdc new file mode 100644 index 0000000..b2b3d98 --- /dev/null +++ b/content/know/concept/deutsch-jozsa-algorithm/index.pdc @@ -0,0 +1,234 @@ +--- +title: "Deutsch-Jozsa algorithm" +firstLetter: "D" +publishDate: 2021-04-08 +categories: +- Quantum information + +date: 2021-04-08T10:31:45+02:00 +draft: false +markup: pandoc +--- + +# Deutsch-Jozsa algorithm + +The **Deutsch algorithm** and its extension, the **Deutsch-Jozsa algorithm**, +were first to prove that quantum computers can +solve certain problems more efficiently +than any classical system. + +Given an unknown "black box" binary function $f(x)$ of one or more bits $x$, +the goal is determine whether $f$ is +**constant** (i.e. $f(x)$ is the same for all $x$) +or **balanced** (i.e. exactly 50\% of all $x$-values yield $f(x) = 0$, +and the other 50\% yield $f(x) = 1$). +We can query $f$ as many times as we want with inputs of our choice, +but we want to solve the problem using as few queries as possible. + +The problem is extremely artificial and of no practical use, +but quantum computers can solve it with a single query, +while classical computers need up to $2^{N - 1} + 1$ queries +for an $N$-bit $x$. + + +## Deutsch algorithm + +The Deutsch algorithm handles the simplest case, +where $x$ is only a single bit. +Only four $f$ exist: + ++ **Constant**: $(f(0) = f(1) = 0)$ or $(f(0) = f(1) = 1)$. ++ **Balanced**: $(f(0) = 0, f(1) = 1)$, or $(f(0) = 1, f(1) = 0)$. + +In other words, we only need to determine if $f(0) = f(1)$ or $f(0) \neq f(1)$. +To do this, we use the following quantum circuit, +where $U_f$ is the oracle we query: + +<a href="deutsch-circuit.png"> +<img src="deutsch-circuit.png" style="width:50%;display:block;margin:auto;"> +</a> + +Due to unitarity constraints, +the action of $U_f$ is defined to be as follows, +with $\oplus$ meaning XOR: + +$$\begin{aligned} + \ket{x} \ket{y} + \quad \to \boxed{U_f} \to \quad + \ket{x} \ket{y \oplus f(x)} +\end{aligned}$$ + +Starting on the left from two qubits $\ket{0}$ and $\ket{1}$, +we apply the Hadamard gate $H$ to both: + +$$\begin{aligned} + \ket{0} \ket{1} + \quad \to \boxed{H^{\otimes 2}} \to \quad + \ket{+} \ket{-} + = \frac{1}{2} \Big( \ket{0} + \ket{1} \Big) \Big( \ket{0} - \ket{1} \Big) +\end{aligned}$$ + +Feeding this result into the oracle $U_f$ then leads us to: + +$$\begin{aligned} + \to \boxed{U_f} \to \quad + \frac{1}{2} \ket{0} \Big( \ket{0 \oplus f(0)} - \ket{1 \oplus f(0)} \Big) + + \frac{1}{2} \ket{1} \Big( \ket{0 \oplus f(1)} - \ket{1 \oplus f(1)} \Big) +\end{aligned}$$ + +The parenthesized superpositions can be reduced. +Assuming that $f(b) = 0$, we notice: + +$$\begin{aligned} + \ket{0 \oplus f(b)} - \ket{1 \oplus f(b)} + = \ket{0 \oplus 0} - \ket{1 \oplus 0} + = \ket{0} - \ket{1} +\end{aligned}$$ + +On the other hand, if we assume that $f(b) = 1$, +we get the opposite result: + +$$\begin{aligned} + \ket{0 \oplus f(b)} - \ket{1 \oplus f(b)} + = \ket{0 \oplus 1} - \ket{1 \oplus 1} + = - \big(\ket{0} - \ket{1}\big) +\end{aligned}$$ + +We can thus combine both cases, $f(b) = 0$ or $f(b) = 1$, +into the following single expression: + +$$\begin{aligned} + \ket{0 \oplus f(b)} - \ket{1 \oplus f(b)} + = (-1)^{f(b)} \big(\ket{0} - \ket{1}\big) +\end{aligned}$$ + +Using this, we rewrite the intermediate state of the quantum circuit like so: + +$$\begin{aligned} + \ket{0} \ket{1} + \quad \to \boxed{H^{\otimes 2}} \to \boxed{U_f} \to \quad + \frac{1}{2} \Big( (-1)^{f(0)} \ket{0} + (-1)^{f(1)} \ket{1} \Big) \Big( \ket{0} - \ket{1} \Big) +\end{aligned}$$ + +The second qubit in state $\ket{-}$ is garbage; it is no longer of interest. +The first qubit is given by: + +$$\begin{aligned} + \frac{1}{\sqrt{2}} \Big( (-1)^{f(0)} \ket{0} + (-1)^{f(1)} \ket{1} \Big) + = \frac{(-1)^{f(0)}}{\sqrt{2}} \Big( \ket{0} + (-1)^{f(0) \oplus f(1)} \ket{1} \Big) +\end{aligned}$$ + +If $f$ is constant, then $f(0) \oplus f(1) = 0$, +meaning this state is $(-1)^{f(0)} \ket{+}$. +On the other hand, if $f$ is balanced, then $f(0) \oplus f(1) = 1$, +meaning this state is $(-1)^{f(0)} \ket{-}$. +Taking the Hadamard transform of this qubit therefore yields: + +$$\begin{aligned} + \to \boxed{H} \to \quad + (-1)^{f(0)} \ket{f(0) \oplus f(1)} +\end{aligned}$$ + +Depending on whether $f$ is constant or balanced, +the mearurement outcome of this state will be $\ket{0}$ or $\ket{1}$ +with 100\% probability. We have solved the problem! + +Note that we only consulted the oracle (i.e. applied $U_f$) once. +A classical computer would need to query it twice, +once with input $x = 0$, and again with $x = 1$. + + +## Full Deutsch-Jozsa algorithm + +The Deutsch-Jozsa algorithm generalizes the above to $N$-bit inputs $x$. +We are promised that $f(x)$ is either constant or balanced; +other possibilities are assumed to be impossible. +This algorithm is then implemented by the following quantum circuit: + +<a href="deutsch-jozsa-circuit.png"> +<img src="deutsch-jozsa-circuit.png" style="width:50%;display:block;margin:auto;"> +</a> + +There are $N$ qubits in initial state $\ket{0}$, and one in $\ket{1}$. +For clarity, the oracle $U_f$ works like so: + +$$\begin{aligned} + \ket{x_1} \ket{x_2} \cdots \ket{x_N} \ket{y} + \quad \to \boxed{U_f} \to \quad + \ket{x_1} \cdots \ket{x_N} \ket{y \oplus f(x_1, ..., x_N)} +\end{aligned}$$ + +Applying the $N + 1$ Hadamard gates to the initial state +yields the following superposition: + +$$\begin{aligned} + \ket{0}^{\otimes N} \ket{1} + \quad \to \boxed{H^{\otimes N + 1}} \to \quad + \ket{+}^{\otimes N} \ket{-} + = \frac{1}{\sqrt{2^N}} \sum_{x = 0}^{2^N - 1} \ket{x} \ket{-} +\end{aligned}$$ + +Where $\ket{x} = \ket{x_1} \cdots \ket{x_N}$ denotes a classical binary state. +For example, if $x = 5 = 2^0 + 2^2$ in the summation, +then $\ket{x} = \ket{1} \ket{0} \ket{1} \ket{0}^{\otimes N-3}$ +(from least to most significant). + +We give this state to the oracle, +and, by the same logic as for the Deutsch algorithm, +get back: + +$$\begin{aligned} + \to \boxed{U_f} \to \quad + \frac{1}{\sqrt{2^N}} \sum_{x = 0}^{2^N - 1} (-1)^{f(x)} \ket{x} \ket{-} +\end{aligned}$$ + +The last qubit $\ket{-}$ is garbage. +Next, applying the Hadamard transform to the other $N$ gives: + +$$\begin{aligned} + \to \boxed{H^{\otimes N}} \to \quad + \frac{1}{\sqrt{2^N}} \sum_{x = 0}^{2^N - 1} (-1)^{f(x)} + \bigg( \frac{1}{\sqrt{2^N}} \sum_{y = 0}^{2^N - 1} (-1)^{x \cdot y} \ket{y} \bigg) +\end{aligned}$$ + +Where $x \cdot y$ is the bitwise dot product of the binary representations of $x$ and $y$, +so, for example, if $N = 2$, then $x \cdot y = x_1 y_1 + x_2 y_2$. +Note that the above expression has not been reduced at all; +it follows from the definition of the Hadamard transform. +We can rewrite it like so: + +$$\begin{aligned} + \frac{1}{2^N} \sum_{x = 0}^{2^N - 1} \sum_{y = 0}^{2^N - 1} (-1)^{f(x) + x \cdot y} \ket{y} + = \sum_{y = 0}^{2^N - 1} \bigg( \frac{1}{2^N} \sum_{x = 0}^{2^N - 1} (-1)^{f(x) + x \cdot y} \bigg) \ket{y} + = \sum_{y = 0}^{2^N - 1} c_y \ket{y} +\end{aligned}$$ + +The parenthesized expression can be interpreted as the coefficients +of a superposition of several $y$-values. +Therefore, the probability that a measurement yields $y = 0$, +i.e. $\ket{y} = \ket{0}^{\otimes N}$, is: + +$$\begin{aligned} + |c_0|^2 + = \bigg| \frac{1}{2^N} \sum_{x = 0}^{2^N - 1} (-1)^{f(x)} \bigg|^2 +\end{aligned}$$ + +The summation always contains an even number of terms, for all values of $N$. +Consequently, if $f$ is constant, then $|c_0|^2 = |\!\pm\! 2^N / 2^N|^2 = 1$. +Otherwise, if $f$ is balanced, all the terms cancel out, so we are left with $|c_0|^2 = 0$. +In other words, we reach the same result as the Deutsch algorithm: +we only need to measure the $N$ qubits once; +$f$ is constant if and only if all are zero. + +The Deutsch-Jozsa algorithm needs only one oracle query to give an error-free result, +whereas a classical computer needs $2^{N-1} + 1$ queries in the worst case; +a revolutionary discovery. + + +## References +1. J.S. Neergaard-Nielsen, + *Quantum information: lectures notes*, + 2021, unpublished. +2. S. Aaronson, + *Introduction to quantum information science: lecture notes*, + 2018, unpublished. diff --git a/content/know/concept/euler-equations/index.pdc b/content/know/concept/euler-equations/index.pdc index 37d2fea..cedfd93 100644 --- a/content/know/concept/euler-equations/index.pdc +++ b/content/know/concept/euler-equations/index.pdc @@ -149,7 +149,7 @@ to which we apply a vector identity: $$\begin{aligned} 0 = \dv{\rho}{t} + \nabla \cdot (\rho \va{v}) - = \dv{\rho}{t} + \va{v} \cdot \nabla \rho + \rho (\nabla \cdot \va{v}) + = \dv{\rho}{t} + (\va{v} \cdot \nabla) \rho + \rho (\nabla \cdot \va{v}) \end{aligned}$$ Thanks to incompressibility, the last term disappears, @@ -159,7 +159,7 @@ $$\begin{aligned} \boxed{ 0 = \frac{\mathrm{D} \rho}{\mathrm{D} t} - = \dv{\rho}{t} + \va{v} \cdot \nabla \rho + = \dv{\rho}{t} + (\va{v} \cdot \nabla) \rho } \end{aligned}$$ diff --git a/content/know/concept/material-derivative/index.pdc b/content/know/concept/material-derivative/index.pdc index af65ca0..1c6bfdc 100644 --- a/content/know/concept/material-derivative/index.pdc +++ b/content/know/concept/material-derivative/index.pdc @@ -57,7 +57,7 @@ then we can rewrite this expression like so: $$\begin{aligned} \dv{t} f\big(x(t), y(t), z(t), t\big) - &= \pdv{f}{t} + \va{v} \cdot \nabla f + &= \pdv{f}{t} + (\va{v} \cdot \nabla) f \end{aligned}$$ Note that $\va{v} = \va{v}(\va{r}, t)$, @@ -73,7 +73,7 @@ and is known as the **material derivative** or **comoving derivative**: $$\begin{aligned} \boxed{ \frac{\mathrm{D}f}{\mathrm{D}t} - \equiv \pdv{f}{t} + \va{v} \cdot \nabla f + \equiv \pdv{f}{t} + (\va{v} \cdot \nabla) f } \end{aligned}$$ @@ -89,14 +89,14 @@ but in fact the definition also works for vector fields $\va{U}(\va{r}, t)$: $$\begin{aligned} \boxed{ \frac{\mathrm{D} \va{U}}{\mathrm{D}t} - \equiv \pdv{f}{t} + \va{v} \cdot \nabla \va{U} + \equiv \pdv{\va{U}}{t} + (\va{v} \cdot \nabla) \va{U} } \end{aligned}$$ Where the advective term is to be evaluated in the following way in Cartesian coordinates: $$\begin{aligned} - \va{v} \cdot \nabla \va{U} + (\va{v} \cdot \nabla) \va{U} = \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} \cdot diff --git a/sources/know/concept/bloch-sphere/bloch.svg b/sources/know/concept/bloch-sphere/bloch.svg new file mode 100644 index 0000000..be67f6f --- /dev/null +++ b/sources/know/concept/bloch-sphere/bloch.svg @@ -0,0 +1,561 @@ +<?xml version="1.0" encoding="UTF-8" standalone="no"?> +<svg + xmlns:dc="http://purl.org/dc/elements/1.1/" + xmlns:cc="http://creativecommons.org/ns#" + xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns="http://www.w3.org/2000/svg" + xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" + xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" + width="150mm" + height="150mm" + viewBox="0 0 150 150" + version="1.1" + id="svg8" + inkscape:version="1.0.2 (e86c870879, 2021-01-15)" + sodipodi:docname="bloch.svg" + inkscape:export-filename="/home/user/bloch.png" + inkscape:export-xdpi="256" + inkscape:export-ydpi="256"> + <defs + id="defs2"> + <marker + style="overflow:visible;" + id="marker1988" + refX="0.0" + refY="0.0" + orient="auto" + inkscape:stockid="Arrow1Mend" + inkscape:isstock="true"> + <path + transform="scale(0.4) rotate(180) translate(10,0)" + style="fill-rule:evenodd;stroke:#222222;stroke-width:1pt;stroke-opacity:1;fill:#222222;fill-opacity:1" + d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z " + id="path1986" /> + </marker> + <marker + style="overflow:visible" + id="Arrow1Mstart" + refX="0.0" + refY="0.0" + orient="auto" + inkscape:stockid="Arrow1Mstart" + inkscape:isstock="true"> + <path + transform="scale(0.4) translate(10,0)" + style="fill-rule:evenodd;stroke:#222222;stroke-width:1pt;stroke-opacity:1;fill:#222222;fill-opacity:1" + d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z " + id="path972" /> + </marker> + <marker + style="overflow:visible;" + id="Arrow1Mend" + refX="0.0" + refY="0.0" + orient="auto" + inkscape:stockid="Arrow1Mend" + inkscape:isstock="true"> + <path + transform="scale(0.4) rotate(180) translate(10,0)" + style="fill-rule:evenodd;stroke:#222222;stroke-width:1pt;stroke-opacity:1;fill:#222222;fill-opacity:1" + d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z " + id="path975" /> + </marker> + <marker + style="overflow:visible;" + id="marker1395" + refX="0.0" + refY="0.0" + orient="auto" + inkscape:stockid="Arrow1Lend" + inkscape:isstock="true"> + <path + transform="scale(0.8) rotate(180) translate(12.5,0)" + style="fill-rule:evenodd;stroke:#ff0000;stroke-width:1pt;stroke-opacity:1;fill:#ff0000;fill-opacity:1" + d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z " + id="path1393" /> + </marker> + <marker + style="overflow:visible;" + id="Arrow2Mend" + refX="0.0" + refY="0.0" + orient="auto" + inkscape:stockid="Arrow2Mend" + inkscape:isstock="true"> + <path + transform="scale(0.6) rotate(180) translate(0,0)" + d="M 8.7185878,4.0337352 L -2.2072895,0.016013256 L 8.7185884,-4.0017078 C 6.9730900,-1.6296469 6.9831476,1.6157441 8.7185878,4.0337352 z " + style="fill-rule:evenodd;stroke-width:0.625;stroke-linejoin:round;stroke:#ff0000;stroke-opacity:1;fill:#ff0000;fill-opacity:1" + id="path993" /> + </marker> + <marker + style="overflow:visible;" + id="Arrow2Lend" + refX="0.0" + refY="0.0" + orient="auto" + inkscape:stockid="Arrow2Lend" + inkscape:isstock="true"> + <path + transform="scale(1.1) rotate(180) translate(1,0)" + d="M 8.7185878,4.0337352 L -2.2072895,0.016013256 L 8.7185884,-4.0017078 C 6.9730900,-1.6296469 6.9831476,1.6157441 8.7185878,4.0337352 z " + style="fill-rule:evenodd;stroke-width:0.625;stroke-linejoin:round;stroke:#ff0000;stroke-opacity:1;fill:#ff0000;fill-opacity:1" + id="path987" /> + </marker> + <marker + style="overflow:visible;" + id="marker1229" + refX="0.0" + refY="0.0" + orient="auto" + inkscape:stockid="Arrow1Lend" + inkscape:isstock="true"> + <path + transform="scale(0.8) rotate(180) translate(12.5,0)" + style="fill-rule:evenodd;stroke:#ff0000;stroke-width:1pt;stroke-opacity:1;fill:#ff0000;fill-opacity:1" + d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z " + id="path969" /> + </marker> + <marker + style="overflow:visible" + id="Arrow1Lstart" + refX="0.0" + refY="0.0" + orient="auto" + inkscape:stockid="Arrow1Lstart" + inkscape:isstock="true"> + <path + transform="scale(0.8) translate(12.5,0)" + style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1;fill:#000000;fill-opacity:1" + d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z " + id="path962" /> + </marker> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath932"> + <rect + style="fill:#ff00ff;stroke:#000000;stroke-width:0.264999;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0" + id="rect934" + width="150" + height="20" + x="29.999998" + y="65" /> + </clipPath> + <clipPath + clipPathUnits="userSpaceOnUse" + id="clipPath956"> + <rect + style="fill:#ff00ff;stroke:#000000;stroke-width:0.264999;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0" + id="rect958" + width="150" + height="20" + x="-39" + y="-100" + transform="rotate(90)" /> + </clipPath> + </defs> + <sodipodi:namedview + id="base" + pagecolor="#ffffff" + bordercolor="#666666" + borderopacity="1.0" + inkscape:pageopacity="1" + inkscape:pageshadow="2" + inkscape:zoom="1.7197115" + inkscape:cx="329.86489" + inkscape:cy="274.90496" + inkscape:document-units="mm" + inkscape:current-layer="layer1" + inkscape:document-rotation="0" + showgrid="true" + inkscape:window-width="2560" + inkscape:window-height="1440" + inkscape:window-x="0" + inkscape:window-y="0" + inkscape:window-maximized="1" + inkscape:pagecheckerboard="false" + inkscape:snap-bbox="true" + inkscape:snap-bbox-midpoints="true" + inkscape:snap-object-midpoints="true" + inkscape:snap-grids="true" + inkscape:snap-page="false" + inkscape:snap-bbox-edge-midpoints="false" + inkscape:snap-intersection-paths="true" + inkscape:object-paths="true" + inkscape:snap-smooth-nodes="true" + inkscape:snap-nodes="true" + inkscape:snap-others="true" + inkscape:bbox-nodes="true"> + <inkscape:grid + units="mm" + spacingx="0.99999999" + spacingy="0.99999999" + type="xygrid" + id="grid44" /> + </sodipodi:namedview> + <metadata + id="metadata5"> + <rdf:RDF> + <cc:Work + rdf:about=""> + <dc:format>image/svg+xml</dc:format> + <dc:type + rdf:resource="http://purl.org/dc/dcmitype/StillImage" /> + <dc:title /> + </cc:Work> + </rdf:RDF> + </metadata> + <g + inkscape:label="Layer 1" + inkscape:groupmode="layer" + id="layer1"> + <ellipse + style="fill:none;stroke:#222222;stroke-width:0.57154763;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1" + id="path59-7" + cx="100" + cy="38" + rx="10" + ry="60" + clip-path="url(#clipPath956)" + transform="matrix(1.4999999,0,0,1,-74.999992,36.999999)" /> + <ellipse + style="fill:none;stroke:#222222;stroke-width:0.57154761;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" + id="path57-3" + cx="105" + cy="65" + rx="60" + ry="10" + clip-path="url(#clipPath932)" + transform="matrix(1,0,0,1.5,-30.000001,-22.500001)" /> + <circle + style="fill:none;stroke:#222222;stroke-width:0.69999998;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" + id="path55" + cx="75" + cy="75" + r="60" /> + <ellipse + style="fill:none;stroke:#222222;stroke-width:0.7;stroke-miterlimit:4;stroke-dasharray:2.1, 2.1;stroke-dashoffset:0;stroke-opacity:1" + id="path57" + cx="75" + cy="75" + rx="60" + ry="14.999998" /> + <ellipse + style="fill:none;stroke:#222222;stroke-width:0.7;stroke-miterlimit:4;stroke-dasharray:2.1, 2.1;stroke-dashoffset:0;stroke-opacity:1" + id="path59" + cx="74.971001" + cy="75" + rx="14.971004" + ry="59.970505" /> + <path + style="fill:none;stroke:#222222;stroke-width:0.69999998;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-start:url(#Arrow1Mstart);marker-end:url(#Arrow1Mend);stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0" + d="M 74.999997,5 V 74.999997 L 145,74.999999" + id="path1304" /> + <path + style="fill:#222222;stroke:#222222;stroke-width:0.7;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-end:url(#marker1988);stroke-miterlimit:4;stroke-dasharray:none;fill-opacity:1" + d="M 74.999997,74.999997 49.999999,99.999999" + id="path1326" /> + <circle + style="fill:#0000ff;stroke:#0000ff;stroke-width:0.7;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0" + id="path1454" + cx="89.507233" + cy="60.468727" + r="0.6963979" /> + <circle + style="fill:#0000ff;stroke:#0000ff;stroke-width:0.7;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0" + id="path1454-5" + cx="60.472923" + cy="89.555412" + r="0.6963979" /> + <circle + style="fill:#0000ff;stroke:#0000ff;stroke-width:0.7;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0" + id="path1454-3" + cx="15.000178" + cy="74.994789" + r="0.6963979" /> + <circle + style="fill:#0000ff;stroke:#0000ff;stroke-width:0.7;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0" + id="path1454-3-5" + cx="135.00212" + cy="74.997704" + r="0.6963979" /> + <circle + style="fill:#0000ff;stroke:#0000ff;stroke-width:0.7;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0" + id="path1454-3-6" + cx="75.009789" + cy="14.994744" + r="0.6963979" /> + <circle + style="fill:#0000ff;stroke:#0000ff;stroke-width:0.7;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0" + id="path1454-3-2" + cx="75.000175" + cy="134.9948" + r="0.6963979" /> + <path + style="fill:none;stroke:#ff0000;stroke-width:0.69902;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#Arrow2Mend)" + d="M 75.020493,75.032989 104.11688,54.677175" + id="path964" /> + <circle + style="fill:#ff0000;stroke:#ff0000;stroke-width:0.7;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0" + id="path1454-3-5-1" + cx="107" + cy="53" + r="0.6963979" /> + <path + style="fill:none;stroke:#ff0000;stroke-width:0.7;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:1.4, 1.4;stroke-dashoffset:0;stroke-opacity:1" + d="m 107,54.499999 v 27" + id="path1463" /> + <path + style="fill:none;stroke:#ff0000;stroke-width:0.758195;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:1.51639, 1.51639;stroke-dashoffset:0;stroke-opacity:1" + d="M 106.92497,81.62366 74.995731,74.989042" + id="path1477" /> + <path + style="fill:none;stroke:#ff0000;stroke-width:0.7;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0" + id="path1544" + sodipodi:type="arc" + sodipodi:cx="75.038399" + sodipodi:cy="74.929611" + sodipodi:rx="7.9961185" + sodipodi:ry="8.1049089" + sodipodi:start="4.7097345" + sodipodi:end="5.6633059" + sodipodi:open="true" + sodipodi:arc-type="arc" + d="m 75.017173,66.824731 a 7.9961185,8.1049089 0 0 1 6.529655,3.396439" /> + <path + id="path1548" + style="fill:none;stroke:#ff0000;stroke-width:0.7;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0" + d="M 84.261781,76.907541 A 12,3 0 0 1 72.042408,77.907454" /> + <g + aria-label="0〉" + id="text1009" + style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:6.21118px;line-height:1.25;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#0000ff;fill-opacity:1;stroke:none;stroke-width:0.388199"> + <path + d="m 82.305355,10.30709 c 0,-0.4968948 -0.03106,-0.9937893 -0.248448,-1.4534166 -0.285714,-0.5962733 -0.795031,-0.6956522 -1.0559,-0.6956522 -0.372671,0 -0.826087,0.1614907 -1.080746,0.7391305 -0.198757,0.4285714 -0.229813,0.9130435 -0.229813,1.4099383 0,0.465838 0.02484,1.024844 0.279503,1.496894 0.267081,0.503106 0.720497,0.627329 1.024845,0.627329 0.335403,0 0.807453,-0.130435 1.080745,-0.720497 0.198758,-0.428571 0.229814,-0.913043 0.229814,-1.403726 z m -0.515528,-0.07454 c 0,0.465839 0,0.888199 -0.06832,1.285715 -0.09317,0.590062 -0.447205,0.776397 -0.726708,0.776397 -0.242236,0 -0.608696,-0.155279 -0.720497,-0.751553 -0.06832,-0.37267 -0.06832,-0.944099 -0.06832,-1.310559 0,-0.3975151 0,-0.807453 0.04969,-1.1428567 0.118013,-0.7391305 0.583851,-0.7950311 0.739131,-0.7950311 0.204968,0 0.614906,0.1118012 0.732919,0.7267081 0.06211,0.3478261 0.06211,0.8198758 0.06211,1.2111797 z" + style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:6.21118px;font-family:'Latin Modern Math';-inkscape-font-specification:'Latin Modern Math, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-east-asian:normal;fill:#0000ff;stroke-width:0.388199" + id="path1373" /> + <path + d="m 82.876771,12.648705 0.391305,0.180124 1.84472,-2.8944102 -1.84472,-2.89441 -0.391305,0.1801242 1.739131,2.7142858 z" + style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:6.21118px;font-family:'Latin Modern Math';-inkscape-font-specification:'Latin Modern Math, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-east-asian:normal;fill:#0000ff;stroke-width:0.388199" + id="path1375" /> + </g> + <g + aria-label="−i〉" + transform="scale(0.99957339,1.0004268)" + id="text1009-8" + style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:6.20872px;line-height:1.25;font-family:C059;-inkscape-font-specification:'C059, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-east-asian:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#0000ff;fill-opacity:1;stroke:none;stroke-width:0.388045"> + <path + d="m 4.8721422,76.037993 h 3.129195 v -0.496697 h -3.129195 z" + style="font-style:italic;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:6.20872px;font-family:C059;-inkscape-font-specification:'C059, Italic';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-east-asian:normal;stroke-width:0.388045" + id="path1405" /> + <path + d="m 9.8142772,74.442352 -1.1920743,0.09313 -0.024835,0.223514 h 0.1490093 c 0.2545575,0 0.3538971,0.05588 0.3538971,0.19247 0,0.06209 -0.012417,0.130383 -0.055879,0.273184 l -0.3601058,1.2107 c -0.1179657,0.397359 -0.1365918,0.484281 -0.1365918,0.627081 0,0.217305 0.1862616,0.384941 0.4221929,0.384941 0.2731837,0 0.5277413,-0.142801 0.7760901,-0.428402 0.1117569,-0.124174 0.2110965,-0.260766 0.3849407,-0.527741 L 9.9384516,76.385682 c -0.3228535,0.490489 -0.5836197,0.751255 -0.7512552,0.751255 -0.062087,0 -0.1055482,-0.05588 -0.1055482,-0.130383 0,-0.06209 0.024835,-0.173844 0.074505,-0.347689 z m -0.111757,-1.514927 c -0.1862616,0 -0.3352709,0.149009 -0.3352709,0.33527 0,0.180053 0.1490093,0.335271 0.3290622,0.335271 0.1924703,0 0.3414795,-0.149009 0.3414795,-0.335271 0,-0.186261 -0.1490092,-0.33527 -0.3352708,-0.33527 z" + style="font-style:italic;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:6.20872px;font-family:C059;-inkscape-font-specification:'C059, Italic';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-east-asian:normal;stroke-width:0.388045" + id="path1407" /> + <path + d="m 10.770409,77.714348 0.39115,0.180053 1.84399,-2.893264 -1.84399,-2.893264 -0.39115,0.180053 1.738442,2.713211 z" + style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:6.20872px;font-family:C059;-inkscape-font-specification:'C059, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-east-asian:normal;fill:#0000ff;stroke-width:0.388045" + id="path1409" /> + </g> + <g + aria-label="1〉" + id="text1009-4" + style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:6.18129px;line-height:1.25;font-family:sans-serif;-inkscape-font-specification:'sans-serif, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-feature-settings:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#0000ff;fill-opacity:1;stroke:none;stroke-width:0.38633"> + <path + d="m 76.496233,142.34889 v -0.19162 h -0.197801 c -0.556316,0 -0.57486,-0.068 -0.57486,-0.2967 v -3.4677 c 0,-0.14835 0,-0.16072 -0.142169,-0.16072 -0.38324,0.39561 -0.927194,0.39561 -1.124995,0.39561 v 0.19162 c 0.123626,0 0.488322,0 0.809749,-0.16072 v 3.20191 c 0,0.22253 -0.01854,0.2967 -0.57486,0.2967 h -0.197802 v 0.19162 c 0.216346,-0.0185 0.754118,-0.0185 1.001369,-0.0185 0.247252,0 0.785024,0 1.001369,0.0185 z" + style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:6.18129px;font-family:'Latin Modern Math';-inkscape-font-specification:'Latin Modern Math, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-east-asian:normal;fill:#0000ff;stroke-width:0.38633" + id="path1415" /> + <path + d="m 77.318333,142.70123 0.389422,0.17925 L 79.543598,140 77.707755,137.11952 77.318333,137.29878 79.049095,140 Z" + style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:6.18129px;font-family:'Latin Modern Math';-inkscape-font-specification:'Latin Modern Math, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-east-asian:normal;fill:#0000ff;stroke-width:0.38633" + id="path1417" /> + </g> + <g + aria-label="+i〉" + id="text1009-8-3" + style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:6.21118px;line-height:1.25;font-family:C059;-inkscape-font-specification:'C059, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-east-asian:normal;text-align:start;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;text-anchor:start;fill:#0000ff;fill-opacity:1;stroke:none;stroke-width:0.388198"> + <path + d="m 138.49015,70.580278 h -1.31677 v 0.496895 h 1.31677 v 1.322981 h 0.4969 v -1.322981 h 1.31677 v -0.496895 h -1.31677 v -1.31677 h -0.4969 z" + style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:6.21118px;font-family:C059;-inkscape-font-specification:'C059, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-east-asian:normal;fill:#0000ff;stroke-width:0.388198" + id="path1423" /> + <path + d="m 142.05536,69.480899 -1.19254,0.09317 -0.0248,0.223603 h 0.14907 c 0.25466,0 0.35404,0.0559 0.35404,0.192546 0,0.06211 -0.0124,0.130435 -0.0559,0.273292 l -0.36025,1.21118 c -0.11801,0.397516 -0.13665,0.484472 -0.13665,0.627329 0,0.217392 0.18634,0.385094 0.42236,0.385094 0.2733,0 0.52795,-0.142858 0.7764,-0.428572 0.1118,-0.124223 0.21118,-0.260869 0.38509,-0.52795 l -0.19254,-0.10559 c -0.32298,0.490683 -0.58385,0.751553 -0.75155,0.751553 -0.0621,0 -0.10559,-0.0559 -0.10559,-0.130435 0,-0.06211 0.0248,-0.173913 0.0745,-0.347826 z m -0.1118,-1.515528 c -0.18633,0 -0.3354,0.149069 -0.3354,0.335404 0,0.180124 0.14907,0.335404 0.32919,0.335404 0.19255,0 0.34162,-0.149068 0.34162,-0.335404 0,-0.186335 -0.14907,-0.335404 -0.33541,-0.335404 z" + style="font-style:italic;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:6.21118px;font-family:C059;-inkscape-font-specification:'C059, Italic';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-east-asian:normal;stroke-width:0.388198" + id="path1425" /> + <path + d="m 143.01188,72.754191 0.3913,0.180125 1.84472,-2.89441 -1.84472,-2.89441 -0.3913,0.180124 1.73913,2.714286 z" + style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:6.21118px;font-family:C059;-inkscape-font-specification:'C059, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-east-asian:normal;fill:#0000ff;stroke-width:0.388198" + id="path1427" /> + </g> + <text |