diff options
author | Prefetch | 2021-11-03 20:24:41 +0100 |
---|---|---|
committer | Prefetch | 2021-11-03 20:24:41 +0100 |
commit | a17363fa734518ada98fc3e79c9fd20f70e42f1b (patch) | |
tree | 402cb2b750d54045a4f8ca9c8d664e41075ac9b1 | |
parent | b090363af28c577bbf9da60d03c82056036588aa (diff) |
Expand knowledge base
-rw-r--r-- | content/know/concept/dyson-equation/index.pdc | 5 | ||||
-rw-r--r-- | content/know/concept/fundamental-solution/index.pdc | 151 | ||||
-rw-r--r-- | content/know/concept/greens-functions/index.pdc | 152 | ||||
-rw-r--r-- | content/know/concept/impulse-response/index.pdc | 15 | ||||
-rw-r--r-- | content/know/concept/lehmann-representation/index.pdc | 235 | ||||
-rw-r--r-- | content/know/concept/propagator/index.pdc | 8 |
6 files changed, 555 insertions, 11 deletions
diff --git a/content/know/concept/dyson-equation/index.pdc b/content/know/concept/dyson-equation/index.pdc index 7b94124..be93379 100644 --- a/content/know/concept/dyson-equation/index.pdc +++ b/content/know/concept/dyson-equation/index.pdc @@ -21,7 +21,8 @@ $$\begin{aligned} = \hat{H}_0(\vb{r}) \: \Psi_0(\vb{r}, t) \end{aligned}$$ -By definition, this equation's *fundamental solution* +By definition, this equation's +[fundamental solution](/know/concept/fundamental-solution/) $G_0(\vb{r}, t; \vb{r}', t')$ satisfies the following: $$\begin{aligned} @@ -142,7 +143,7 @@ and integrate over $G$'s second argument pair: $$\begin{aligned} \iint \big( \hat{G}{}_0^{-1} \!-\! \hat{H}_1 \big) G(\vb{r}', t') \: f(\vb{r}', t') \dd{\vb{r}'} \dd{t'} - = \iint^\infty \delta(\vb{r} \!-\! \vb{r}') \: \delta(t \!-\! t') \: f(\vb{r}, t) \dd{\vb{r}'} \dd{t'} + = \iint \delta(\vb{r} \!-\! \vb{r}') \: \delta(t \!-\! t') \: f(\vb{r}', t') \dd{\vb{r}'} \dd{t'} = f \end{aligned}$$ diff --git a/content/know/concept/fundamental-solution/index.pdc b/content/know/concept/fundamental-solution/index.pdc new file mode 100644 index 0000000..2ae9899 --- /dev/null +++ b/content/know/concept/fundamental-solution/index.pdc @@ -0,0 +1,151 @@ +--- +title: "Fundamental solution" +firstLetter: "F" +publishDate: 2021-11-02 +categories: +- Mathematics +- Physics + +date: 2021-11-01T14:57:46+01:00 +draft: false +markup: pandoc +--- + +# Fundamental solution + +Given a linear operator $\hat{L}$ acting on $x \in [a, b]$, +its **fundamental solution** $G(x, x')$ is defined as the response +of $\hat{L}$ to a [Dirac delta function](/know/concept/dirac-delta-function/) +$\delta(x - x')$ for $x \in ]a, b[$: + +$$\begin{aligned} + \boxed{ + \hat{L}\{ G(x, x') \} + = A \delta(x - x') + } +\end{aligned}$$ + +Where $A$ is a constant, usually $1$. +Fundamental solutions are often called **Green's functions**, +but are distinct from the (somewhat related) +[Green's functions](/know/concept/greens-functions/) +in many-body quantum theory. + +Note that the definition of $G(x, x')$ generalizes that of +the [impulse response](/know/concept/impulse-response/). +And likewise, due to the superposition principle, +once $G$ is known, $\hat{L}$'s response $u(x)$ to +*any* forcing function $f(x)$ can easily be found as follows: + +$$\begin{aligned} + \hat{L} \{ u(x) \} + = f(x) + \quad \implies \quad + \boxed{ + u(x) + = \frac{1}{A} \int_a^b f(x') \: G(x, x') \dd{x'} + } +\end{aligned}$$ + +<div class="accordion"> +<input type="checkbox" id="proof-solution"/> +<label for="proof-solution">Proof</label> +<div class="hidden"> +<label for="proof-solution">Proof.</label> +$\hat{L}$ only acts on $x$, so $x' \in ]a, b[$ is simply a parameter, +meaning we are free to multiply the definition of $G$ +by the constant $f(x')$ on both sides, +and exploit $\hat{L}$'s linearity: + +$$\begin{aligned} + A f(x') \: \delta(x - x') + = f(x') \hat{L}\{ G(x, x') \} + = \hat{L}\{ f(x') \: G(x, x') \} +\end{aligned}$$ + +We then integrate both sides over $x'$ in the interval $[a, b]$, +allowing us to consume $\delta(x \!-\! x')$. +Note that $\int \dd{x'}$ commutes with $\hat{L}$ acting on $x$: + +$$\begin{aligned} + A \int_a^b f(x') \: \delta(x - x') \dd{x'} + &= \int_a^b \hat{L}\{ f(x') \: G(x, x') \} \dd{x'} + \\ + A f(x) + &= \hat{L} \int_a^b f(x') \: G(x, x') \dd{x'} +\end{aligned}$$ + +By definition, $\hat{L}$'s response $u(x)$ to $f(x)$ +satisfies $\hat{L}\{ u(x) \} = f(x)$, recognizable here. +</div> +</div> + +While the impulse response is typically used for initial value problems, +the fundamental solution $G$ is used for boundary value problems. +Suppose those boundary conditions are homogeneous, +i.e. $u(x)$ or one of its derivatives is zero at the boundaries. +Then: + +$$\begin{aligned} + 0 + &= u(a) + = \frac{1}{A} \int_a^b f(x') \: G(a, x') \dd{x'} + \qquad \implies \quad + G(a, x') = 0 + \\ + 0 + &= u_x(a) + = \frac{1}{A} \int_a^b f(x') \: G_x(a, x') \dd{x'} + \quad \implies \quad + G_x(a, x') = 0 +\end{aligned}$$ + +This holds for all $x'$, and analogously for the other boundary $x = b$. +In other words, the boundary conditions are built into $G$. + +What if the boundary conditions are inhomogeneous? +No problem: thanks to the linearity of $\hat{L}$, +those conditions can be given to the homogeneous solution $u_h(x)$, +where $\hat{L}\{ u_h(x) \} = 0$, +such that the inhomogeneous solution $u_i(x) = u(x) - u_h(x)$ +has homogeneous boundaries again, +so we can use $G$ as usual to find $u_i(x)$, and then just add $u_h(x)$. + +If $\hat{L}$ is self-adjoint +(see e.g. [Sturm-Liouville theory](/know/concept/sturm-liouville-theory/)), +then the fundamental solution $G(x, x')$ +has the following **reciprocity** boundary condition: + +$$\begin{aligned} + \boxed{ + G(x, x') = G^*(x', x) + } +\end{aligned}$$ + +<div class="accordion"> +<input type="checkbox" id="proof-reciprocity"/> +<label for="proof-reciprocity">Proof</label> +<div class="hidden"> +<label for="proof-reciprocity">Proof.</label> +Consider two parameters $x_1'$ and $x_2'$. +The self-adjointness of $\hat{L}$ means that: + +$$\begin{aligned} + \int_a^b G^*(x, x_1') \Big( \hat{L} \{ G(x, x_2') \} \Big) \dd{x} + &= \int_a^b \Big( \hat{L} \{ G(x, x_1') \} \Big)^* G(x, x_2') \dd{x} + \\ + \int_a^b G^*(x, x_1') \: \delta(x - x_2') \dd{x} + &= \int_a^b \delta^*(x - x_1') \: G(x, x_2') \dd{x} + \\ + G^*(x_2', x_1') + &= G(x_1', x_2') +\end{aligned}$$ +</div> +</div> + + + +## References +1. O. Bang, + *Applied mathematics for physicists: lecture notes*, 2019, + unpublished. diff --git a/content/know/concept/greens-functions/index.pdc b/content/know/concept/greens-functions/index.pdc new file mode 100644 index 0000000..10ab09b --- /dev/null +++ b/content/know/concept/greens-functions/index.pdc @@ -0,0 +1,152 @@ +--- +title: "Green's functions" +firstLetter: "G" +publishDate: 2021-11-03 +categories: +- Physics +- Quantum mechanics + +date: 2021-11-01T09:46:27+01:00 +draft: false +markup: pandoc +--- + +# Green's functions + +In many-body quantum theory, **Green's functions** +are correlation functions between particle creation/annihilation operators. +They are somewhat related to +[fundamental solution](/know/concept/fundamental-solution/) functions, +which are also often called *Green's functions*. + +The **retarded Green's function** $G_{\nu \nu'}^R$ +and the **advanced Green's function** $G_{\nu \nu'}^A$ +are defined like so, +where the expectation value $\expval{}$ is +with respect to thermal equilibrium, +$\nu$ and $\nu'$ are labels of single-particle states that may include spin, +and $\hat{c}_\nu$ and $\hat{c}_{\nu'}^\dagger$ are annihilation/creation operators +from the [second quantization](/know/concept/second-quantization/): + +$$\begin{aligned} + \boxed{ + \begin{aligned} + G_{\nu \nu'}^R(t, t') + &\equiv -\frac{i}{\hbar} \Theta(t - t') \expval{\comm{\hat{c}_{\nu}(t)}{\hat{c}_{\nu'}^\dagger(t')}} + \\ + G_{\nu \nu'}^A(t, t') + &\equiv \frac{i}{\hbar} \Theta(t' - t) \expval{\comm{\hat{c}_{\nu}(t)}{\hat{c}_{\nu'}^\dagger(t')}} + \end{aligned} + } +\end{aligned}$$ + +Where $\Theta$ is the [Heaviside step function](/know/concept/heaviside-step-function/). +This is for bosons; for fermions the commutator +must be replaced by an anticommutator, as usual. +Notice that $G^R_{\nu \nu'}$ has the same form as the correlation function +from the [Kubo formula](/know/concept/kubo-formula/). + +Furthermore, the **greater Green's function** $G_{\nu \nu'}^>$ +and **lesser Green's function** $G_{\nu \nu'}^<$ are: + +$$\begin{aligned} + \boxed{ + \begin{aligned} + G_{\nu \nu'}^>(t, t') + &\equiv -\frac{i}{\hbar} \expval{\hat{c}_{\nu}(t) \hat{c}_{\nu'}^\dagger(t')} + \\ + G_{\nu \nu'}^<(t, t') + &\equiv \mp \frac{i}{\hbar} \expval{\hat{c}_{\nu'}^\dagger(t') \hat{c}_{\nu}(t)} + \end{aligned} + } +\end{aligned}$$ + +Where $-$ is for bosons, and $+$ is for fermions. +The retarded and advanced Green's functions can thus be expressed as follows: + +$$\begin{aligned} + G_{\nu \nu'}^R(t, t') + &= \Theta(t - t') \Big( G_{\nu \nu'}^>(t, t') - G_{\nu \nu'}^<(t, t') \Big) + \\ + G_{\nu \nu'}^A(t, t') + &= \Theta(t' - t) \Big( G_{\nu \nu'}^<(t, t') - G_{\nu \nu'}^>(t, t') \Big) +\end{aligned}$$ + +If the Hamiltonian involves interactions, +it might be more natural to use quantum field operators $\hat{\Psi}(\vb{r}, t)$ +instead of choosing a basis of single-particle states $\psi_\nu$. +In that case, instead of a label $\nu$, +we use the spin $s$ and position $\vb{r}$, leading to: + +$$\begin{aligned} + G_{ss'}^R(\vb{r}, t; \vb{r}', t') + &= -\frac{i}{\hbar} \Theta(t - t') \expval{\comm{\hat{\Psi}_{s}(\vb{r}, t)}{\hat{\Psi}_{s'}^\dagger(\vb{r}', t')}} + \\ + &= \sum_{\nu \nu'} \psi_\nu(\vb{r}) \: \psi^*_{\nu'}(\vb{r}') \: G_{\nu \nu'}^R(t, t') +\end{aligned}$$ + +And analogously for $G_{ss'}^A$, $G_{ss'}^>$ and $G_{ss'}^<$. +Note that the time-dependence is given to the old $G_{\nu \nu'}^R$, +i.e. to $\hat{c}_\nu$ and $\hat{c}_{\nu'}^\dagger$. +In other words, we are using the +[Heisenberg picture](/know/concept/heisenberg-picture/). + +If the Hamiltonian is time-independent, +then it can be shown that all the Green's functions +only depend on the time-difference $t - t'$ +(for a proof, see [Kubo formula](/know/concept/kubo-formula/)): + +$$\begin{aligned} + G_{\nu \nu'}^>(t, t') = G_{\nu \nu'}^>(t - t') + \qquad \quad + G_{\nu \nu'}^<(t, t') = G_{\nu \nu'}^<(t - t') +\end{aligned}$$ + + +If the Hamiltonian is both time-independent and non-interacting, +then the time-dependence of $\hat{c}_\nu$ +can simply be factored out as follows: + +$$\begin{aligned} + \hat{c}_\nu(t) + = \hat{c}_\nu \exp\!(- i \varepsilon_\nu t / \hbar) +\end{aligned}$$ + +Then the diagonal ($\nu = \nu'$) greater and lesser Green's functions +can be written in the form below, where $f_\nu$ is either +the [Fermi-Dirac distribution](/know/concept/fermi-dirac-distribution/) +or the [Bose-Einstein distribution](/know/concept/bose-einstein-distribution/). +Note that the off-diagonal ($\nu \neq \nu'$) functions vanish, +because $\expval*{\hat{c}_{\nu} \hat{c}_{\nu'}^\dagger} = 0$ there, +since the many-particle states are simply orthogonal +[Slater determinants](/know/concept/slater-determinant/)/permanents: + +$$\begin{aligned} + G_{\nu \nu}^>(t, t') + &= -\frac{i}{\hbar} \expval{\hat{c}_{\nu} \hat{c}_{\nu}^\dagger} \exp\!\big(\!-\! i \varepsilon_\nu (t \!-\! t') / \hbar \big) + \\ + &= -\frac{i}{\hbar} (1 - f_\nu) \exp\!\big(\!-\! i \varepsilon_\nu (t \!-\! t') / \hbar \big) + \\ + G_{\nu \nu}^<(t, t') + &= \mp \frac{i}{\hbar} \expval{\hat{c}_{\nu}^\dagger \hat{c}_{\nu}} \exp\!\big(\!-\! i \varepsilon_\nu (t \!-\! t') / \hbar \big) + \\ + &= \mp \frac{i}{\hbar} f_\nu \exp\!\big(\!-\! i \varepsilon_\nu (t \!-\! t') / \hbar \big) +\end{aligned}$$ + +The diagonal retarded and advanced Green's functions then reduce to +the following, where $+$ applies to fermions, and $-$ to bosons: + +$$\begin{aligned} + G_{\nu \nu}^R(t, t') + &= - \frac{i}{\hbar} \Theta(t - t') \big( 1 - f_\nu \pm f_\nu \big) \exp\!\big(\!-\! i \varepsilon_\nu (t \!-\! t') / \hbar \big) + \\ + G_{\nu \nu}^A(t, t') + &= \frac{i}{\hbar} \Theta(t - t') \big( 1 - f_\nu \pm f_\nu \big) \exp\!\big(\!-\! i \varepsilon_\nu (t \!-\! t') / \hbar \big) +\end{aligned}$$ + + + +## References +1. H. Bruus, K. Flensberg, + *Many-body quantum theory in condensed matter physics*, + 2016, Oxford. diff --git a/content/know/concept/impulse-response/index.pdc b/content/know/concept/impulse-response/index.pdc index fa921fa..f4c40a8 100644 --- a/content/know/concept/impulse-response/index.pdc +++ b/content/know/concept/impulse-response/index.pdc @@ -28,9 +28,9 @@ This can be used to find the response $u(t)$ of $\hat{L}$ to by simply taking the convolution with $u_p(t)$: $$\begin{aligned} + \hat{L} \{ u(t) \} = f(t) + \quad \implies \quad \boxed{ - \hat{L} \{ u(t) \} = f(t) - \quad \implies \quad u(t) = (f * u_p)(t) } \end{aligned}$$ @@ -68,6 +68,17 @@ $$\begin{aligned} </div> </div> +This is useful for solving initial value problems, +because any initial condition can be satisfied +due to the linearity of $\hat{L}$, +by choosing the initial values of the homogeneous solution $\hat{L}\{ u_h(t) \} = 0$ +such that the total solution $(f * u_p)(t) + u_h(t)$ +has the desired values. + +Meanwhile, for boundary value problems, +the related [fundamental solution](/know/concept/fundamental-solution/) +is preferable. + ## References diff --git a/content/know/concept/lehmann-representation/index.pdc b/content/know/concept/lehmann-representation/index.pdc new file mode 100644 index 0000000..f38f803 --- /dev/null +++ b/content/know/concept/lehmann-representation/index.pdc @@ -0,0 +1,235 @@ +--- +title: "Lehmann representation" +firstLetter: "L" +publishDate: 2021-11-03 +categories: +- Physics +- Quantum mechanics + +date: 2021-11-02T19:04:16+01:00 +draft: false +markup: pandoc +--- + +# Lehmann representation + +In many-body quantum theory, the **Lehmann representation** +is an alternative way to write the [Green's functions](/know/concept/greens-functions/), +obtained by expanding in the many-particle eigenstates +under the assumption of a time-independent Hamiltonian $\hat{H}$. + +We start by writing out the +greater Green's function $G_{\nu \nu'}(t, t')$, +and then expanding its thermal expectation value $\expval{}$ +into a sum of many-particle basis states $\ket{n}$: + +$$\begin{aligned} + G_{\nu \nu'}^>(t, t') + = - \frac{i}{\hbar} \expval{\hat{c}_\nu(t) \hat{c}_{\nu'}^\dagger(t')} + &= - \frac{i}{\hbar Z} \sum_{n} \matrixel**{n}{\hat{c}_\nu(t) \hat{c}_{\nu'}^\dagger(t') e^{-\beta \hat{H}}}{n} +\end{aligned}$$ + +Where $\beta = 1 / (k_B T)$, and $Z$ is the partition function +(see [canonical ensemble](/know/concept/canonical-ensemble/)); +the operator $e^{\beta \hat{H}}$ gives the weight of each term at thermal equilibrium. +Since $\ket{n}$ is an eigenstate of $\hat{H}$ with energy $E_n$, +this gives us a factor of $e^{\beta E_n}$. +Furthermore, we are in the [Heisenberg picture](/know/concept/heisenberg-picture/), +so we write out the time-dependence of $\hat{c}_\nu$ and $\hat{c}_{\nu'}^\dagger$: + +$$\begin{aligned} + G_{\nu \nu'}^>(t, t') + &= - \frac{i}{\hbar Z} \sum_{n} e^{-\beta E_n} \matrixel**{n}{e^{i \hat{H} t / \hbar} \hat{c}_\nu e^{- i \hat{H} t / \hbar} + e^{i \hat{H} t' / \hbar} \hat{c}_{\nu'}^\dagger e^{- i \hat{H} t' / \hbar}}{n} + \\ + &= - \frac{i}{\hbar Z} \sum_{n} e^{-\beta E_n} + \matrixel**{n}{e^{i \hat{H} (t - t') / \hbar} \hat{c}_\nu e^{- i \hat{H} (t - t') / \hbar} \hat{c}_{\nu'}^\dagger}{n} +\end{aligned}$$ + +Where we used that the trace $\Tr\!(x) = \sum_{n} \matrixel{n}{x}{n}$ +is invariant under cyclic permutations of $x$. +The $\ket{n}$ form a basis of eigenstates of $\hat{H}$, +so we insert an identity operator $\sum_{n'} \ket{n'} \bra{n'}$: + +$$\begin{aligned} + G_{\nu \nu'}^>(t - t') + &= - \frac{i}{\hbar Z} \sum_{n n'} e^{- \beta E_n} + \matrixel**{n}{e^{i \hat{H} (t - t') / \hbar} \hat{c}_\nu e^{- i \hat{H} (t - t') / \hbar}}{n'} \matrixel**{n'}{\hat{c}_{\nu'}^\dagger}{n} + \\ + &= - \frac{i}{\hbar Z} \sum_{n n'} e^{-\beta E_n} + \matrixel*{n}{\hat{c}_\nu}{n'} \matrixel*{n'}{\hat{c}_{\nu'}^\dagger}{n} e^{i (E_n - E_{n'}) (t - t') / \hbar} +\end{aligned}$$ + +Note that $G_{\nu \nu'}^>$ now only depends on the time difference $t - t'$, +because $\hat{H}$ is time-independent. +Next, we take the [Fourier transform](/know/concept/fourier-transform/) +$t \to \omega$ (with $t' = 0$): + +$$\begin{aligned} + G_{\nu \nu'}^>(\omega) + &= - \frac{i}{\hbar Z} \sum_{n n'} e^{-\beta E_n} \matrixel*{n}{\hat{c}_\nu}{n'} \matrixel*{n'}{\hat{c}_{\nu'}^\dagger}{n} + \int_{-\infty}^\infty e^{i (E_n - E_{n'}) t / \hbar} \: e^{i \omega t} \dd{t} +\end{aligned}$$ + +Here, we recognize the integral +as a [Dirac delta function](/know/concept/dirac-delta-function/) $\delta$, +thereby introducing a factor of $2 \pi$, +and arriving at the Lehmann representation of $G_{\nu \nu'}^>$: + +$$\begin{aligned} + \boxed{ + G_{\nu \nu'}^>(\omega) + = - \frac{2 \pi i}{Z} \sum_{n n'} e^{-\beta E_n} \matrixel*{n}{\hat{c}_\nu}{n'} \matrixel*{n'}{\hat{c}_{\nu'}^\dagger}{n} + \: \delta(E_n - E_{n'} + \hbar \omega) + } +\end{aligned}$$ + +We now go through the same process for the lesser Green's function $G_{\nu \nu'}^<(t, t')$: + +$$\begin{aligned} + G_{\nu \nu'}^<(t - t') + &= \mp \frac{i}{\hbar Z} \sum_{n} \matrixel*{n}{\hat{c}_{\nu'}^\dagger(t') \hat{c}_\nu(t) e^{-\beta \hat{H}}}{n} + \\ + &= \mp \frac{i}{\hbar Z} e^{-\beta E_n} \sum_{n n'} \matrixel*{n}{\hat{c}_{\nu'}^\dagger}{n'} \matrixel*{n'}{\hat{c}_\nu}{n} + e^{i (E_{n'} - E_n) (t - t') / \hbar} +\end{aligned}$$ + +Where $-$ is for bosons, and $+$ for fermions. +Fourier transforming yields the following: + +$$\begin{aligned} + G_{\nu \nu'}^<(\omega) + &= \mp \frac{2 \pi i}{\hbar Z} \sum_{n n'} e^{-\beta E_n} \matrixel*{n}{\hat{c}_{\nu'}^\dagger}{n'} \matrixel*{n'}{\hat{c}_\nu}{n} + \: \delta(E_{n'} - E_n + \hbar \omega) +\end{aligned}$$ + +We swap $n$ and $n'$, leading to the following +Lehmann representation of $G_{\nu \nu'}^<$: + +$$\begin{aligned} + \boxed{ + G_{\nu \nu'}^<(\omega) + = \mp \frac{2 \pi i}{Z} \sum_{n n'} e^{-\beta E_{n'}} \matrixel*{n}{\hat{c}_\nu}{n'} \matrixel*{n'}{\hat{c}_{\nu'}^\dagger}{n} + \: \delta(E_n - E_{n'} + \hbar \omega) + } +\end{aligned}$$ + +Due to the delta function $\delta$, +each term is only nonzero for $E_n' = E_n + \hbar \omega$, +so we write: + +$$\begin{aligned} + G_{\nu \nu'}^<(\omega) + = \mp \frac{2 \pi i}{\hbar Z} \sum_{n n'} e^{-\beta (E_n + \hbar \omega)} + \matrixel*{n}{\hat{c}_\nu}{n'} \matrixel*{n'}{\hat{c}_{\nu'}^\dagger}{n} \: \delta(E_n - E_{n'} + \hbar \omega) +\end{aligned}$$ + +Therefore, we arrive at the following useful relation +between $G_{\nu \nu'}^<$ and $G_{\nu \nu'}^>$: + +$$\begin{aligned} + \boxed{ + G_{\nu \nu'}^<(\omega) + = \pm e^{-\beta \hbar \omega} G_{\nu \nu'}^>(\omega) + } +\end{aligned}$$ + +Moving on, let us do the same for +the retarded Green's function $G_{\nu \nu'}^R(t, t')$, given by: + +$$\begin{aligned} + G_{\nu \nu'}^R(t \!-\! t') + &= \Theta(t \!-\! t') \Big( G_{\nu \nu'}^>(t - t') - G_{\nu \nu'}^<(t - t') \Big) + \\ + &= - \frac{i}{\hbar Z} \Theta(t \!-\! t') \sum_{n n'} + \matrixel*{n}{\hat{c}_\nu}{n'} \matrixel*{n'}{\hat{c}_{\nu'}^\dagger}{n} + \Big( e^{-\beta E_n} \mp e^{- \beta E_{n'}} \Big) e^{i (E_n - E_{n'}) (t - t') / \hbar} +\end{aligned}$$ + +We take the Fourier transform, but to ensure convergence, +we must introduce an infinitesimal positive $\eta \to 0^+$ to the exponent +(and eventually take the limit): + +$$\begin{aligned} + G_{\nu \nu'}^R(\omega) + &= - \frac{i}{\hbar Z} \sum_{n n'} \Big( ... \Big) \int_{-\infty}^\infty \Theta(t) e^{i (E_n - E_{n'}) t / \hbar} e^{i (\omega + i \eta) t} \dd{t} + \\ + &= - \frac{i}{\hbar Z} \sum_{n n'} \Big( ... \Big) \int_0^\infty e^{i (E_n - E_{n'}) t / \hbar} e^{i (\omega + i \eta) t} \dd{t} + \\ + &= - \frac{i}{\hbar Z} \sum_{n n'} \Big( ... \Big) + \bigg[ \frac{\hbar e^{i (\hbar \omega + E_n - E_{n'}) t / \hbar} e^{- \eta t}}{i (\hbar \omega + E_n - E_{n'}) - \hbar \eta} \bigg]_0^\infty +\end{aligned}$$ + +Leading us to the following Lehmann representation +of the retarded Green's function $G_{\nu \nu'}^R$: + +$$\begin{aligned} + \boxed{ + G_{\nu \nu'}^R(\omega) + = \frac{1}{Z} \sum_{n n'} + \frac{\matrixel*{n}{\hat{c}_\nu}{n'} \matrixel*{n'}{\hat{c}_{\nu'}^\dagger}{n}}{\hbar (\omega + i \eta) + E_n - E_{n'}} + \Big( e^{-\beta E_n} \mp e^{- \beta E_{n'}} \Big) + } +\end{aligned}$$ + +Finally, we go through the same steps for the advanced Green's function $G_{\nu \nu'}^A(t, t')$: + +$$\begin{aligned} + G_{\nu \nu'}^A(t \!-\! t') + &= \Theta(t' \!-\! t) \Big( G_{\nu \nu'}^<(t - t') - G_{\nu \nu'}^>(t - t') \Big) + \\ + &= \frac{i}{\hbar Z} \Theta(t' \!-\! t) \sum_{n n'} + \matrixel*{n}{\hat{c}_\nu}{n'} \matrixel*{n'}{\hat{c}_{\nu'}^\dagger}{n} + \Big( e^{-\beta E_n} \mp e^{- \beta E_{n'}} \Big) e^{i (E_n - E_{n'}) (t - t') / \hbar} +\end{aligned}$$ + +For the Fourier transform, we must again introduce $\eta \to 0^+$ +(although note the sign): + +$$\begin{aligned} + G_{\nu \nu'}^A(\omega) + &= \frac{i}{\hbar Z} \sum_{n n'} \Big( ... \Big) \int_{-\infty}^\infty \Theta(-t) e^{i (E_n - E_{n'}) t / \hbar} e^{i (\omega - i \eta) t} \dd{t} + \\ + &= \frac{i}{\hbar Z} \sum_{n n'} \Big( ... \Big) \int_{-\infty}^0 e^{i (E_n - E_{n'}) t / \hbar} e^{i (\omega - i \eta) t} \dd{t} + \\ + &= \frac{i}{\hbar Z} \sum_{n n'} \Big( ... \Big) + \bigg[ \frac{\hbar e^{i (\hbar \omega + E_n - E_{n'}) t / \hbar} e^{\eta t}}{i (\hbar \omega + E_n - E_{n'}) + \hbar \eta} \bigg]_{-\infty}^0 +\end{aligned}$$ + +Therefore, the Lehmann representation of +the advanced Green's function $G_{\nu \nu'}^A$ is as follows: + +$$\begin{aligned} + \boxed{ + G_{\nu \nu'}^A(\omega) + = \frac{1}{Z} \sum_{n n'} + \frac{\matrixel*{n}{\hat{c}_\nu}{n'} \matrixel*{n'}{\hat{c}_{\nu'}^\dagger}{n}}{\hbar (\omega - i \eta) + E_n - E_{n'}} + \Big( e^{-\beta E_n} \mp e^{- \beta E_{n'}} \Big) + } +\end{aligned}$$ + +As a final note, let us take the complex conjugate of this expression: + +$$\begin{aligned} + \big( G_{\nu \nu'}^A(\omega) \big)^* + = \frac{1}{Z} \sum_{n n'} + \frac{\matrixel*{n}{\hat{c}_{\nu'}}{n'} \matrixel*{n'}{\hat{c}_\nu^\dagger}{n}}{\hbar (\omega + i \eta) + E_n - E_{n'}} + \Big( e^{-\beta E_n} \mp e^{- \beta E_{n'}} \Big) +\end{aligned}$$ + +Note the subscripts $\nu$ and $\nu'$. +Comparing this to $G_{\nu \nu'}^R$ gives us another useful relation: + +$$\begin{aligned} + \boxed{ + G^R_{\nu \nu'}(\omega) + = \big( G^A_{\nu' \nu}(\omega) \big)^* + } +\end{aligned}$$ + + + +## References +1. H. Bruus, K. Flensberg, + *Many-body quantum theory in condensed matter physics*, + 2016, Oxford. diff --git a/content/know/concept/propagator/index.pdc b/content/know/concept/propagator/index.pdc index 517376c..bcc1de7 100644 --- a/content/know/concept/propagator/index.pdc +++ b/content/know/concept/propagator/index.pdc @@ -61,7 +61,7 @@ $$\begin{aligned} \end{aligned}$$ Sometimes the name "propagator" is also used to refer to -the so-called *fundamental solution* $G$ +the [fundamental solution](/know/concept/fundamental-solution/) $G$ of the time-dependent Schrödinger equation, which is related to $K$ by: @@ -73,9 +73,3 @@ $$\begin{aligned} \end{aligned}$$ Where $\Theta(t)$ is the [Heaviside step function](/know/concept/heaviside-step-function/). -The definition of $G$ is that it satisfies the following equation, -where $\delta$ is the [Dirac delta function](/know/concept/dirac-delta-function/): - -$$\begin{aligned} - \Big( i \hbar \pdv{t_f} - \hat{H} \Big) G = \delta(x_f - x_i) \: \delta(t_f - t_i) -\end{aligned}$$ |