summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorPrefetch2022-03-11 21:15:23 +0100
committerPrefetch2022-03-11 21:15:23 +0100
commiteacd6f7bc1a4a048e1352b740dd3354e2a035106 (patch)
treefdf2d92ff5b41dec4256639cd1c203441d1bb26d
parentbd349aaace1deb21fa6d88719b7009b63aec542a (diff)
Expand knowledge base
-rw-r--r--content/know/concept/archimedes-principle/index.pdc11
-rw-r--r--content/know/concept/metacentric-height/index.pdc185
-rw-r--r--content/know/concept/metacentric-height/sketch.pngbin0 -> 171361 bytes
-rw-r--r--content/know/concept/runge-kutta-method/index.pdc267
-rw-r--r--sources/know/concept/metacentric-height/sketch.svg455
5 files changed, 912 insertions, 6 deletions
diff --git a/content/know/concept/archimedes-principle/index.pdc b/content/know/concept/archimedes-principle/index.pdc
index 3a063ec..fb91b67 100644
--- a/content/know/concept/archimedes-principle/index.pdc
+++ b/content/know/concept/archimedes-principle/index.pdc
@@ -39,7 +39,7 @@ $$\begin{aligned}
Where $\va{g}$ is the gravitational field,
and $\rho_\mathrm{b}$ is the density of the body.
Meanwhile, the pressure $p$ of the surrounding fluid exerts a force
-on the surface $S$ of $V$:
+on the entire surface $S$ of $V$:
$$\begin{aligned}
\va{F}_p
@@ -75,18 +75,17 @@ and zero on the "non-submerged" side, we find:
$$\begin{aligned}
0
- = \mathrm{g} (\rho_\mathrm{b} - \rho_\mathrm{f}) V
= \mathrm{g} (m_\mathrm{b} - m_\mathrm{f})
\end{aligned}$$
-In other words, the mass $m_\mathrm{b}$ of the submerged portion $V$ of the body,
+In other words, the mass $m_\mathrm{b}$ of the entire body
is equal to the mass $m_\mathrm{f}$ of the fluid it displaces.
This is the best-known version of Archimedes' principle.
-Note that if $\rho_\mathrm{b} > \rho_\mathrm{f}$, then,
+Note that if $\rho_\mathrm{b} > \rho_\mathrm{f}$,
+then the displaced mass $m_\mathrm{f} < m_\mathrm{b}$
even if the entire body is submerged,
-the displaced mass $m_\mathrm{f} < m_\mathrm{b}$,
-and the object will continue to sink.
+and the object will therefore continue to sink.
diff --git a/content/know/concept/metacentric-height/index.pdc b/content/know/concept/metacentric-height/index.pdc
new file mode 100644
index 0000000..1fc6aca
--- /dev/null
+++ b/content/know/concept/metacentric-height/index.pdc
@@ -0,0 +1,185 @@
+---
+title: "Metacentric height"
+firstLetter: "M"
+publishDate: 2022-03-11
+categories:
+- Physics
+- Fluid mechanics
+
+date: 2021-05-08T19:03:36+02:00
+draft: false
+markup: pandoc
+---
+
+# Metacentric height
+
+Consider an object with center of mass $G$,
+floating in a large body of liquid whose surface is flat at $z = 0$.
+For our purposes, it is easiest to use a coordinate system
+whose origin is at the area centroid
+of the object's cross-section through the liquid's surface, namely:
+
+$$\begin{aligned}
+ (x_0, y_0)
+ \equiv \frac{1}{A_{wl}} \iint_{wl} (x, y) \dd{A}
+\end{aligned}$$
+
+Where $A_{wl}$ is the cross-sectional area
+enclosed by the "waterline" around the "boat".
+Note that the boat's center of mass $G$
+does not coincide with the origin in general,
+as is illustrated in the following sketch
+of our choice of coordinate system:
+
+<a href="sketch.png">
+<img src="sketch.png" style="width:67%;display:block;margin:auto;">
+</a>
+
+Here, $B$ is the **center of buoyancy**, equal to
+the center of mass of the volume of water displaced by the boat
+as per [Archimedes' principle](/know/concept/archimedes-principle/).
+At equilibrium, the forces of buoyancy $\vb{F}_B$ and gravity $\vb{F}_G$
+have equal magnitudes in opposite directions,
+and $B$ is directly above or below $G$,
+or in other words, $x_B = x_G$ and $y_B = y_G$,
+which are calculated as follows:
+
+$$\begin{aligned}
+ (x_G, y_G, z_G)
+ &\equiv \frac{1}{V_{boat}} \iiint_{boat} (x, y, z) \dd{V}
+ \\
+ (x_B, y_B, z_B)
+ &\equiv \frac{1}{V_{disp}} \iiint_{disp} (x, y, z) \dd{V}
+\end{aligned}$$
+
+Where $V_{boat}$ is the volume of the whole boat,
+and $V_{disp}$ is the volume of liquid it displaces.
+
+Whether a given equilibrium is *stable* is more complicated.
+Suppose the ship is tilted by a small angle $\theta$ around the $x$-axis,
+in which case the old waterline, previously in the $z = 0$ plane,
+gets shifted to a new plane, namely:
+
+$$\begin{aligned}
+ z
+ = \sin\!(\theta) \: y
+ \approx \theta y
+\end{aligned}$$
+
+Then $V_{disp}$ changes by $\Delta V_{disp}$, which is estimated below.
+If a point of the old waterline is raised by $z$,
+then the displaced liquid underneath it is reduced proportionally,
+hence the sign:
+
+$$\begin{aligned}
+ \Delta V_{disp}
+ \approx - \iint_{wl} z \dd{A}
+ \approx - \theta \iint_{wl} y \dd{A}
+ = 0
+\end{aligned}$$
+
+So $V_{disp}$ is unchanged, at least to first order in $\theta$.
+However, the *shape* of the displaced volume may have changed significantly.
+Therefore, the shift of the position of the buoyancy center from $B$ to $B'$
+involves a correction $\Delta y_B$ in addition to the rotation by $\theta$:
+
+$$\begin{aligned}
+ y_B'
+ = y_B - \theta z_B + \Delta y_B
+\end{aligned}$$
+
+We find $\Delta y_B$ by calculating the virtual buoyancy center of the shape difference:
+on the side of the boat that has been lifted by the rotation,
+the center of buoyancy is "pushed" away due to the reduced displacement there,
+and vice versa on the other side. Consequently:
+
+$$\begin{aligned}
+ \Delta y_B
+ = - \frac{1}{V_{disp}} \iint_{wl} y z \dd{A}
+ \approx - \frac{\theta}{V_{disp}} \iint_{wl} y^2 \dd{A}
+ = - \frac{\theta I}{V_{disp}}
+\end{aligned}$$
+
+Where we have defined the so-called **area moment** $I$ of the waterline as follows:
+
+$$\begin{aligned}
+ \boxed{
+ I
+ \equiv \iint_{wl} y^2 \dd{A}
+ }
+\end{aligned}$$
+
+Now that we have an expression for $\Delta y_B$,
+the new center's position $y_B'$ is found to be:
+
+$$\begin{aligned}
+ y_B'
+ = y_B - \theta \Big( z_B + \frac{I}{V_{disp}} \Big)
+ \approx y_B - \sin\!(\theta) \: \Big( z_B + \frac{I}{V_{disp}} \Big)
+\end{aligned}$$
+
+This looks like a rotation by $\theta$ around a so-called **metacenter** $M$,
+with a height $z_M$ known as the **metacentric height**, defined as:
+
+$$\begin{aligned}
+ \boxed{
+ z_M
+ \equiv z_B + \frac{I}{V_{disp}}
+ }
+\end{aligned}$$
+
+Meanwhile, the position of $M$ is defined such that it lies
+on the line between the old centers $G$ and $B$.
+Our calculation of $y_B'$ has shown that the new $B'$ always lies below $M$.
+
+After the rotation, the boat is not in equilibrium anymore,
+because the new $G'$ is not directly above or below $B'$.
+The force of gravity then causes a torque $\vb{T}$ given by:
+
+$$\begin{aligned}
+ \vb{T}
+ = (\vb{r}_G' - \vb{r}_B') \cross m \vb{g}
+\end{aligned}$$
+
+Where $\vb{g}$ points downwards.
+Since the rotation was around the $x$-axis,
+we are only interested in the $x$-component $T_x$, which becomes:
+
+$$\begin{aligned}
+ T_x
+ = - (y_G' - y_B') m \mathrm{g}
+ = - \big((y_G - \theta z_G) - (y_B - \theta z_M)\big) m \mathrm{g}
+\end{aligned}$$
+
+With $y_G' = y_G - \theta z_G$ being a simple rotation of $G$.
+At the initial equilibrium $y_G = y_B$, so:
+
+$$\begin{aligned}
+ T_x
+ = \theta (z_G - z_M) m \mathrm{g}
+\end{aligned}$$
+
+If $z_M < z_G$, then $T_x$ has the same sign as $\theta$,
+so $\vb{T}$ further destabilizes the boat.
+But if $z_M > z_G$, then $\vb{T}$ counteracts the rotation,
+and the boat returns to the original equilibrium,
+leading us to the following stability condition:
+
+$$\begin{aligned}
+ \boxed{
+ z_M > z_G
+ }
+\end{aligned}$$
+
+In other words, for a given boat design (or general shape)
+$z_G$ and $z_M$ can be calculated,
+and as long as they satisfy the above inequality,
+it will float stably in water (or any other fluid,
+although the buoyancy depends significantly on the density).
+
+
+
+## References
+1. B. Lautrup,
+ *Physics of continuous matter: exotic and everyday phenomena in the macroscopic world*, 2nd edition,
+ CRC Press.
diff --git a/content/know/concept/metacentric-height/sketch.png b/content/know/concept/metacentric-height/sketch.png
new file mode 100644
index 0000000..f33fe36
--- /dev/null
+++ b/content/know/concept/metacentric-height/sketch.png
Binary files differ
diff --git a/content/know/concept/runge-kutta-method/index.pdc b/content/know/concept/runge-kutta-method/index.pdc
new file mode 100644
index 0000000..ac2eabf
--- /dev/null
+++ b/content/know/concept/runge-kutta-method/index.pdc
@@ -0,0 +1,267 @@
+---
+title: "Runge-Kutta method"
+firstLetter: "R"
+publishDate: 2022-03-10
+categories:
+- Mathematics
+- Numerical methods
+
+date: 2022-03-07T14:10:18+01:00
+draft: false
+markup: pandoc
+---
+
+# Runge-Kutta method
+
+A **Runge-Kutta method** (RKM) is a popular approach
+to numerically solving systems of ordinary differential equations.
+Let $\vb{x}(t)$ be the vector we want to find,
+governed by $\vb{f}(t, \vb{x})$:
+
+$$\begin{aligned}
+ \vb{x}'(t)
+ = \vb{f}\big(t, \vb{x}(t)\big)
+\end{aligned}$$
+
+Like in all numerical methods, the $t$-axis is split into discrete steps.
+If a step has size $h$, then as long as $h$ is small enough,
+we can make the following approximation:
+
+$$\begin{aligned}
+ \vb{x}'(t) + a h \vb{x}''(t)
+ &\approx \vb{x}'(t \!+\! a h)
+ \\
+ &\approx \vb{f}\big(t \!+\! a h,\, \vb{x}(t \!+\! a h)\big)
+ \\
+ &\approx \vb{f}\big(t \!+\! a h,\, \vb{x}(t) \!+\! a h \vb{x}'(t) \big)
+\end{aligned}$$
+
+For sufficiently small $h$,
+higher-order derivates can also be included,
+albeit still at $t \!+\! a h$:
+
+$$\begin{aligned}
+ \vb{x}'(t) + a h \vb{x}''(t) + b h^2 \vb{x}'''(t)
+ &\approx \vb{f}\big(t \!+\! a h,\, \vb{x}(t) \!+\! a h \vb{x}'(t) \!+\! b h^2 \vb{x}''(t) \big)
+\end{aligned}$$
+
+Although these approximations might seem innocent,
+they actually make it quite complicated to determine the error order of a given RKM.
+
+Now, consider a Taylor expansion around the current $t$,
+truncated at a chosen order $n$:
+
+$$\begin{aligned}
+ \vb{x}(t \!+\! h)
+ &= \vb{x}(t) + h \vb{x}'(t) + \frac{h^2}{2} \vb{x}''(t) + \frac{h^3}{6} \vb{x}'''(t) + \:...\, + \frac{h^n}{n!} \vb{x}^{(n)}(t)
+ \\
+ &= \vb{x}(t) + h \bigg[ \vb{x}'(t) + \frac{h}{2} \vb{x}''(t) + \frac{h^2}{6} \vb{x}'''(t) + \:...\, + \frac{h^{n-1}}{n!} \vb{x}^{(n)}(t) \bigg]
+\end{aligned}$$
+
+We are free to split the terms as follows,
+choosing real factors $\omega_{mj}$ subject to $\sum_{j} \omega_{mj} = 1$:
+
+$$\begin{aligned}
+ \vb{x}(t \!+\! h)
+ &= \vb{x} + h \bigg[ \sum_{j = 1}^{N_1} \omega_{1j} \, \vb{x}'
+ + \frac{h}{2} \sum_{j = 1}^{N_2} \omega_{2j} \, \vb{x}''
+ + \:...\, + \frac{h^{n-1}}{n!} \sum_{j = 1}^{N_n} \omega_{nj} \, \vb{x}^{(n)} \bigg]
+\end{aligned}$$
+
+Where the integers $N_1,...,N_n$ are also free to choose,
+but for reasons that will become clear later,
+the most general choice for an RKM is $N_1 = n$, $N_n = 1$, and:
+
+$$\begin{aligned}
+ N_{n-1}
+ = N_n \!+\! 2
+ ,\quad
+ \cdots
+ ,\quad
+ N_{n-m}
+ = N_{n-m+1} \!+\! m \!+\! 1
+ ,\quad
+ \cdots
+ ,\quad
+ N_{2}
+ = N_3 \!+\! n \!-\! 1
+\end{aligned}$$
+
+In other words, $N_{n-m}$ is the $m$th triangular number.
+This is not so important,
+since this is not a practical way to describe RKMs,
+but it is helpful to understand how they work.
+
+
+## Example derivation
+
+For example, let us truncate at $n = 3$,
+such that $N_1 = 3$, $N_2 = 3$ and $N_3 = 1$.
+The following derivation is very general,
+except it requires all $\alpha_j \neq 0$.
+Renaming $\omega_{mj}$, we start from:
+
+$$\begin{aligned}
+ \vb{x}(t \!+\! h)
+ &= \vb{x} + h \bigg[ (\alpha_1 + \alpha_2 + \alpha_3) \, \vb{x}'
+ + \frac{h}{2} (\beta_2 + \beta_{31} + \beta_{32}) \, \vb{x}''
+ + \frac{h^2}{6} \gamma_3 \, \vb{x}''' \bigg]
+ \\
+ &= \vb{x} + h \bigg[ \alpha_1 \vb{x}'
+ + \Big( \alpha_2 \vb{x}' + \frac{h}{2} \beta_2 \vb{x}'' \Big)
+ + \Big( \alpha_3 \vb{x}' + \frac{h}{2} (\beta_{31} + \beta_{32}) \vb{x}'' + \frac{h^2}{6} \gamma_3 \vb{x}''' \Big) \bigg]
+\end{aligned}$$
+
+As discussed earlier, the parenthesized expressions
+can be approximately rewritten with $\vb{f}$:
+
+$$\begin{aligned}
+ \vb{x}(t \!+\! h)
+ = \vb{x} + h &\bigg[ \alpha_1 \vb{f}(t, \vb{x})
+ + \alpha_2 \vb{f}\Big( t \!+\! \frac{h \beta_2}{2 \alpha_2}, \;
+ \vb{x} \!+\! \frac{h \beta_2}{2 \alpha_2} \vb{x}' \Big)
+ \\
+ & + \alpha_3 \vb{f}\Big( t \!+\! \frac{h (\beta_{31} \!\!+\!\! \beta_{32})}{2 \alpha_3}, \;
+ \vb{x} \!+\! \frac{h \beta_{31}}{2 \alpha_3} \vb{x}' \!+\! \frac{h \beta_{32}}{2 \alpha_3} \vb{x}'
+ \!+\! \frac{h^2 \gamma_3}{6 \alpha_3} \vb{x}'' \Big) \bigg]
+ \\
+ = \vb{x} + h &\bigg[ \alpha_1 \vb{k}_1
+ + \alpha_2 \vb{f}\Big( t \!+\! \frac{h \beta_2}{2 \alpha_2}, \;
+ \vb{x} \!+\! \frac{h \beta_2}{2 \alpha_2} \vb{k}_1 \!\Big)
+ \\
+ & + \alpha_3 \vb{f}\Big( t \!+\! \frac{h (\beta_{31} \!\!+\!\! \beta_{32})}{2 \alpha_3}, \;
+ \vb{x} \!+\! \frac{h \beta_{31}}{2 \alpha_3} \vb{k}_1 \!+\! \frac{h \beta_{32}}{2 \alpha_3}
+ \vb{f}\Big( t \!+\! \frac{h \gamma_3}{3 \beta_{32}}, \;
+ \vb{x} \!+\! \frac{h \gamma_3}{3 \beta_{32}} \vb{k}_1 \!\Big) \!\Big) \bigg]
+\end{aligned}$$
+
+Here, we can see an opportunity to save some computational time
+by reusing an evaluation of $\vb{f}$.
+Technically, this is optional, but it would be madness not to,
+so we choose:
+
+$$\begin{aligned}
+ \frac{\beta_2}{2 \alpha_2}
+ = \frac{\gamma_3}{3 \beta_{32}}
+\end{aligned}$$
+
+Such that the next step of $\vb{x}$'s numerical solution is as follows,
+recalling that $\sum_{j} \alpha_j = 1$:
+
+$$\begin{aligned}
+ \boxed{
+ \vb{x}(t \!+\! h)
+ = \vb{x}(t) + h \Big( \alpha_1 \vb{k}_1 + \alpha_2 \vb{k}_2 + \alpha_3 \vb{k}_3 \Big)
+ }
+\end{aligned}$$
+
+Where $\vb{k}_1$, $\vb{k}_2$ and $\vb{k}_3$ are different estimates
+of the average slope $\vb{x}'$ between $t$ and $t \!+\! h$,
+whose weighted average is used to make the $t$-step.
+They are given by:
+
+$$\begin{aligned}
+ \boxed{
+ \begin{aligned}
+ \vb{k}_1
+ &\equiv \vb{f}(t, \vb{x})
+ \\
+ \vb{k}_2
+ &\equiv \vb{f}\bigg( t + \frac{h \beta_2}{2 \alpha_2}, \;
+ \vb{x} + \frac{h \beta_2}{2 \alpha_2} \vb{k}_1 \bigg)
+ \\
+ \vb{k}_3
+ &\equiv \vb{f}\bigg( t + \frac{h (\beta_{31} \!\!+\!\! \beta_{32})}{2 \alpha_3}, \;
+ \vb{x} + \frac{h \beta_{31}}{2 \alpha_3} \vb{k}_1 + \frac{h \beta_{32}}{2 \alpha_3} \vb{k}_2 \bigg)
+ \end{aligned}
+ }
+\end{aligned}$$
+
+Despite the contraints on $\alpha_j$ and $\beta_j$,
+there is an enormous freedom of choice here,
+all leading to valid RKMs, although not necessarily good ones.
+
+
+## General form
+
+A more practical description goes as follows:
+in an $s$-stage RKM, a weighted average is taken
+of up to $s$ slope estimates $\vb{k}_j$ with weights $b_j$.
+Let $\sum_{j} b_j = 1$, then:
+
+$$\begin{aligned}
+ \boxed{
+ \vb{x}(t \!+\! h)
+ = \vb{x}(t) + h \sum_{j = 1}^{s} b_j \vb{k}_j
+ }
+\end{aligned}$$
+
+Where the estimates $\vb{k}_1, ..., \vb{k}_s$
+depend on each other, and are calculated one by one as:
+
+$$\begin{aligned}
+ \boxed{
+ \vb{k}_m
+ = \vb{f}\bigg( t + h c_m,\; \vb{x} + h \sum_{j = 1}^{m - 1} a_{mj} \vb{k}_j \bigg)
+ }
+\end{aligned}$$
+
+With $c_1 = 1$ and $\sum_{j = 1} a_{mj} = c_m$.
+Writing this out for the first few $m$, the pattern is clear:
+
+$$\begin{aligned}
+ \vb{k}_1
+ &= \vb{f}(t, \vb{x})
+ \\
+ \vb{k}_2
+ &= \vb{f}\big( t + h c_2,\; \vb{x} + h a_{21} \vb{k}_1 \big)
+ \\
+ \vb{k}_3
+ &= \vb{f}\big( t + h c_3,\; \vb{x} + h (a_{31} \vb{k}_1 + a_{32} \vb{k}_2) \big)
+ \\
+ \vb{k}_4
+ &= \:...
+\end{aligned}$$
+
+The coefficients of a given RKM are usually
+compactly represented in a **Butcher tableau**:
+
+$$\begin{aligned}
+ \begin{array}{c|ccc}
+ 0 \\
+ c_2 & a_{21} \\
+ c_3 & a_{31} & a_{32} \\
+ \vdots & \vdots & \vdots & \ddots \\
+ c_s & a_{s1} & a_{s2} & \cdots & a_{s,s-1} \\
+ \hline
+ & b_1 & b_2 & \cdots & b_{s-1} & b_s
+ \end{array}
+\end{aligned}$$
+
+Each RKM has an **order** $p$,
+such that the global truncation error is $\mathcal{O}(h^p)$,
+i.e. the accumulated difference between the numerical
+and the exact solutions is proportional to $h^p$.
+
+The surprise is that $p$ need not be equal to the Taylor expansion order $n$,
+nor the stage count $s$.
+Typically, $s = n$ for computational efficiency, but $s \ge n$ is possible in theory.
+
+The order $p$ of a given RKM is determined by
+a complicated set of equations on the coefficients,
+and the lowest possible $s$ for a desired $p$
+is in fact only partially known.
+For $p \le 4$ the bound is $s \ge p$,
+whereas for $p \ge 5$ the only proven bound is $s \ge p \!+\! 1$,
+but for $p \ge 7$ no such efficient methods have been found so far.
+
+If you need an RKM with a certain order, look it up.
+There exist many efficient methods for $p \le 4$ where $s = p$,
+and although less popular, higher $p$ are also available.
+
+
+
+## References
+1. J.C. Butcher,
+ *Numerical methods for ordinary differential equations*, 3rd edition,
+ Wiley.
diff --git a/sources/know/concept/metacentric-height/sketch.svg b/sources/know/concept/metacentric-height/sketch.svg
new file mode 100644
index 0000000..63fcc36
--- /dev/null
+++ b/sources/know/concept/metacentric-height/sketch.svg
@@ -0,0 +1,455 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<!-- Created with Inkscape (http://www.inkscape.org/) -->
+
+<svg
+ width="297mm"
+ height="210mm"
+ viewBox="0 0 297 210"
+ version="1.1"
+ id="svg5"
+ inkscape:version="1.1.2 (0a00cf5339, 2022-02-04, custom)"
+ sodipodi:docname="sketch.svg"
+ inkscape:export-filename="/home/user/git/prefetch/content/know/concept/metacentric-height/sketch.png"
+ inkscape:export-xdpi="130"
+ inkscape:export-ydpi="130"
+ xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
+ xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
+ xmlns:xlink="http://www.w3.org/1999/xlink"
+ xmlns="http://www.w3.org/2000/svg"
+ xmlns:svg="http://www.w3.org/2000/svg">
+ <sodipodi:namedview
+ id="namedview7"
+ pagecolor="#ffffff"
+ bordercolor="#999999"
+ borderopacity="1"
+ inkscape:pageshadow="0"
+ inkscape:pageopacity="1"
+ inkscape:pagecheckerboard="0"
+ inkscape:document-units="mm"
+ showgrid="false"
+ units="mm"
+ inkscape:zoom="4"
+ inkscape:cx="183.375"
+ inkscape:cy="385.875"
+ inkscape:window-width="2560"
+ inkscape:window-height="1440"
+ inkscape:window-x="0"
+ inkscape:window-y="0"
+ inkscape:window-maximized="1"
+ inkscape:current-layer="layer1" />
+ <defs
+ id="defs2">
+ <rect
+ x="321.02648"
+ y="444.77016"
+ width="62.225397"
+ height="48.790368"
+ id="rect291728" />
+ <rect
+ x="240.06275"
+ y="442.29529"
+ width="56.568542"
+ height="44.547727"
+ id="rect285776" />
+ <rect
+ x="1041"
+ y="402"
+ width="22.272971"
+ height="50.111806"
+ id="rect143137" />
+ <rect
+ x="976.5"
+ y="221.5"
+ width="39.5"
+ height="40"
+ id="rect116257" />
+ <rect
+ x="274.35743"
+ y="21.213203"
+ width="31.112698"
+ height="22.627417"
+ id="rect56869" />
+ <rect
+ x="442.64884"
+ y="360.62446"
+ width="28.991378"
+ height="19.79899"
+ id="rect45167" />
+ <rect
+ x="1036.5"
+ y="417.5"
+ width="25.5"
+ height="20"
+ id="rect24805" />
+ <rect
+ x="836.5"
+ y="216.5"
+ width="25.5"
+ height="18.5"
+ id="rect16747" />
+ <linearGradient
+ inkscape:collect="always"
+ id="linearGradient3813">
+ <stop
+ style="stop-color:#00ccff;stop-opacity:1;"
+ offset="0"
+ id="stop3809" />
+ <stop
+ style="stop-color:#00ccff;stop-opacity:0.80784314;"
+ offset="0.71215469"
+ id="stop7137" />
+ <stop
+ style="stop-color:#00ccff;stop-opacity:0;"
+ offset="1"
+ id="stop3811" />
+ </linearGradient>
+ <linearGradient
+ inkscape:collect="always"
+ id="linearGradient17573">
+ <stop
+ style="stop-color:#00ccff;stop-opacity:1;"
+ offset="0"
+ id="stop17569" />
+ <stop
+ style="stop-color:#00ccff;stop-opacity:0.71764706;"
+ offset="0.83868533"
+ id="stop18123" />
+ <stop
+ style="stop-color:#00ccff;stop-opacity:0;"
+ offset="1"
+ id="stop17571" />
+ </linearGradient>
+ <inkscape:path-effect
+ effect="bspline"
+ id="path-effect5946"
+ is_visible="true"
+ lpeversion="1"
+ weight="33.333333"
+ steps="2"
+ helper_size="0"
+ apply_no_weight="true"
+ apply_with_weight="true"
+ only_selected="false" />
+ <marker
+ style="overflow:visible;"
+ id="Arrow1Mend"
+ refX="0.0"
+ refY="0.0"
+ orient="auto"
+ inkscape:stockid="Arrow1Mend"
+ inkscape:isstock="true">
+ <path
+ transform="scale(0.4) rotate(180) translate(10,0)"
+ style="fill-rule:evenodd;fill:context-stroke;stroke:context-stroke;stroke-width:1.0pt;"
+ d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
+ id="path5495" />
+ </marker>
+ <marker
+ style="overflow:visible;"
+ id="Arrow1Lend"
+ refX="0.0"
+ refY="0.0"
+ orient="auto"
+ inkscape:stockid="Arrow1Lend"
+ inkscape:isstock="true">
+ <path
+ transform="scale(0.8) rotate(180) translate(12.5,0)"
+ style="fill-rule:evenodd;fill:context-stroke;stroke:context-stroke;stroke-width:1.0pt;"
+ d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
+ id="path5489" />
+ </marker>
+ <inkscape:path-effect
+ effect="bspline"
+ id="path-effect1190"
+ is_visible="true"
+ lpeversion="1"
+ weight="33.333333"
+ steps="2"
+ helper_size="0"
+ apply_no_weight="true"
+ apply_with_weight="true"
+ only_selected="false" />
+ <inkscape:path-effect
+ effect="bspline"
+ id="path-effect1190-7"
+ is_visible="true"
+ lpeversion="1"
+ weight="33.333333"
+ steps="2"
+ helper_size="0"
+ apply_no_weight="true"
+ apply_with_weight="true"
+ only_selected="false" />
+ <inkscape:path-effect
+ effect="bspline"
+ id="path-effect1190-2"
+ is_visible="true"
+ lpeversion="1"
+ weight="33.333333"
+ steps="2"
+ helper_size="0"
+ apply_no_weight="true"
+ apply_with_weight="true"
+ only_selected="false" />
+ <marker
+ style="overflow:visible"
+ id="Arrow1Mend-6"
+ refX="0"
+ refY="0"
+ orient="auto"
+ inkscape:stockid="Arrow1Mend"
+ inkscape:isstock="true">
+ <path
+ transform="matrix(-0.4,0,0,-0.4,-4,0)"
+ style="fill:context-stroke;fill-rule:evenodd;stroke:context-stroke;stroke-width:1pt"
+ d="M 0,0 5,-5 -12.5,0 5,5 Z"
+ id="path5495-3" />
+ </marker>
+ <marker
+ style="overflow:visible"
+ id="Arrow1Mend-8"
+ refX="0"
+ refY="0"
+ orient="auto"
+ inkscape:stockid="Arrow1Mend"
+ inkscape:isstock="true">
+ <path
+ transform="matrix(-0.4,0,0,-0.4,-4,0)"
+ style="fill:context-stroke;fill-rule:evenodd;stroke:context-stroke;stroke-width:1pt"
+ d="M 0,0 5,-5 -12.5,0 5,5 Z"
+ id="path5495-1" />
+ </marker>
+ <marker
+ style="overflow:visible"
+ id="Arrow1Mend-6-2"
+ refX="0"
+ refY="0"
+ orient="auto"
+ inkscape:stockid="Arrow1Mend"
+ inkscape:isstock="true">
+ <path
+ transform="matrix(-0.4,0,0,-0.4,-4,0)"
+ style="fill:context-stroke;fill-rule:evenodd;stroke:context-stroke;stroke-width:1pt"
+ d="M 0,0 5,-5 -12.5,0 5,5 Z"
+ id="path5495-3-9" />
+ </marker>
+ <inkscape:path-effect
+ effect="bspline"
+ id="path-effect5946-8"
+ is_visible="true"
+ lpeversion="1"
+ weight="33.333333"
+ steps="2"
+ helper_size="0"
+ apply_no_weight="true"
+ apply_with_weight="true"
+ only_selected="false" />
+ <radialGradient
+ inkscape:collect="always"
+ xlink:href="#linearGradient17573"
+ id="radialGradient17575"
+ cx="276.54956"
+ cy="377.52759"
+ fx="276.54956"
+ fy="377.52759"
+ r="203.64675"
+ gradientTransform="matrix(0.30750404,-0.00137332,0.00212844,0.48507119,-13.047427,-74.347331)"
+ gradientUnits="userSpaceOnUse" />
+ <radialGradient
+ inkscape:collect="always"
+ xlink:href="#linearGradient3813"
+ id="radialGradient3815"
+ cx="824.43933"
+ cy="337.07266"
+ fx="824.43933"
+ fy="337.07266"
+ r="274.35742"
+ gradientTransform="matrix(1.0359564,-9.798295e-5,7.5086357e-5,0.7765908,-30.471282,186.99881)"
+ gradientUnits="userSpaceOnUse" />
+ <rect
+ x="240.06274"
+ y="442.29529"
+ width="56.568542"
+ height="44.547726"
+ id="rect285776-1" />
+ <rect
+ x="321.02649"
+ y="444.77017"
+ width="62.225395"
+ height="48.790367"
+ id="rect291728-9" />
+ </defs>
+ <g
+ inkscape:label="Layer 1"
+ inkscape:groupmode="layer"
+ id="layer1">
+ <path
+ style="fill:url(#radialGradient3815);fill-opacity:1;stroke:none;stroke-width:2.12132;stroke-miterlimit:4;stroke-dasharray:none"
+ d="m 547.30065,580.88822 -27.67888,-131.10397 77.02088,-0.0643 h 51.342 l 2.09644,7.23418 c 4.25006,14.66568 10.96616,24.85195 20.88582,34.77648 15.56172,15.56934 35.1659,24.45029 81.10664,37.36957 13.93257,3.91807 70.35018,16.37701 72.20833,16.38378 1.7115,0.006 14.2288,-2.23465 41.92392,-9.13799 64.81941,-16.15702 90.44231,-26.10857 109.05,-42.17083 11.2577,-9.71771 18.15173,-22.50738 24.8371,-37.74365 l 1.3471,-6.69601 48.0832,-0.008 65.761,-0.18478 -19.2687,131.34556 V 712.05653 H 821.65808 547.30065 Z"
+ id="path1592"
+ sodipodi:nodetypes="ccccssscssscccccccc"
+ transform="scale(0.26458333)" />
+ <path
+ style="fill:url(#radialGradient17575);fill-opacity:1;stroke:none;stroke-width:0.561266;stroke-miterlimit:4;stroke-dasharray:2.24506, 1.12253;stroke-dashoffset:0"
+ d="M 9.3544329,102.43104 9.9156989,10.102788 72.777491,9.9156993 135.4522,10.289877 l 0.37417,92.702433 -0.24188,105.20594 -63.534603,0.44028 -62.3212768,-0.0661 z m 88.7038181,74.45562 c 0.07798,-0.0671 0.06755,-0.092 0.178366,-0.18296 0.128969,-0.10585 0.228883,-0.37506 0.373526,-1.41945 0.117567,-0.84892 0.850175,-6.49753 1.724017,-12.51711 3.75764,-25.88508 5.51225,-38.82252 6.36359,-53.16058 0.33655,-5.66812 0.10442,-15.713441 -0.12706,-20.854713 C 105.65364,68.38422 102.87311,57.015281 96.188144,47.625414 93.404751,43.715796 88.938601,39.285221 85.184632,36.470274 81.338048,33.585874 73.620504,28.978006 73.0688,28.913233 c -0.198827,-0.02334 -0.204531,-0.02781 -0.429194,0.0165 -0.229896,0.04534 -0.673915,0.212102 -2.389672,1.15902 -7.535259,4.158675 -11.178682,7.020705 -15.736157,11.71068 -9.915567,10.203841 -13.813755,21.040754 -15.367407,42.721204 -0.310065,4.326803 -0.04562,19.966873 0.264396,24.981033 0.981837,15.88178 2.087673,27.15676 7.46666,64.20733 0.286629,1.9743 0.439706,2.88717 0.618141,2.88717 0.137173,0 0.16823,0.20497 0.16823,0.30786 0,0.12381 8.497803,-0.12793 25.27342,-0.12793 16.775618,0 24.93836,0.26782 25.032187,0.18705 z"
+ id="path9465"
+ sodipodi:nodetypes="cccccccccssssssssssssscssssss" />
+ <path
+ style="fill:none;stroke:#000000;stroke-width:0.79375;stroke-miterlimit:4;stroke-dasharray:none"
+ d="M 47.511778,176.71301 H 98.216063"
+ id="path859" />
+ <path
+ style="fill:none;stroke:#000000;stroke-width:0.79375;stroke-miterlimit:4;stroke-dasharray:3.175, 1.5875;stroke-dashoffset:0;marker-end:url(#Arrow1Mend)"
+ d="m 72.796224,106.15995 c 0,-91.299793 0,-91.299793 0,-91.299793"
+ id="path1073" />
+ <path
+ style="fill:none;stroke:#000000;stroke-width:0.79375;stroke-miterlimit:4;stroke-dasharray:3.175, 1.5875;stroke-dashoffset:0;marker-end:url(#Arrow1Mend-6)"
+ d="m 72.796224,106.15995 c 49.520426,0 49.520426,0 49.520426,0"
+ id="path1073-9" />
+ <path
+ style="fill:none;stroke:#000000;stroke-width:0.79375;stroke-miterlimit:4;stroke-dasharray:none"
+ d="M 47.511778,176.71301 C 45.133863,160.63999 42.755951,144.567 41.178019,130.4742 39.600087,116.3814 38.822285,104.26991 39.044497,92.491501 c 0.222211,-11.778404 1.444495,-23.22343 4.083515,-31.6684 2.63902,-8.44497 6.694701,-13.889583 10.278323,-17.834344 3.583622,-3.94476 6.694768,-6.389232 9.833908,-8.472724 3.139141,-2.083493 6.305904,-3.805767 9.472642,-5.528028"
+ id="path1188"
+ inkscape:path-effect="#path-effect1190"
+ inkscape:original-d="M 47.511778,176.71301 C 45.134083,160.63996 42.756171,144.56697 40.377902,128.49308 39.600334,116.38138 38.822531,104.26989 38.044449,92.157893 39.266998,80.713128 40.489282,69.268102 41.711301,57.82281 45.767329,52.378352 49.82301,46.933739 53.87859,41.488643 c 3.111597,-2.444354 6.222742,-4.888826 9.333809,-7.333708 3.167156,-1.72208 6.333919,-3.444354 9.500486,-5.16693"
+ sodipodi:nodetypes="ccccccc" />
+ <path
+ style="fill:none;stroke:#000000;stroke-width:0.79375;stroke-miterlimit:4;stroke-dasharray:none"
+ d="m 98.216063,176.71301 c 2.377917,-16.07303 4.755817,-32.14602 6.333747,-46.23882 1.57793,-14.0928 2.35574,-26.20429 2.13352,-37.982698 -0.22221,-11.778404 -1.44449,-23.22343 -4.0835,-31.668403 C 99.960806,52.378116 95.905129,46.933508 92.321505,42.988746 88.737881,39.043985 85.626739,36.599516 82.487599,34.516024 79.34846,32.432532 76.181693,30.710254 73.01496,28.987995"
+ id="path1188-6"
+ inkscape:path-effect="#path-effect1190-2"
+ inkscape:original-d="m 98.216063,176.71301 c 2.377677,-16.07306 4.755597,-32.14605 7.133867,-48.21994 0.77756,-12.1117 1.55537,-24.22319 2.33345,-36.335187 C 106.46084,80.713118 105.23856,69.268092 104.01654,57.8228 99.960503,52.378342 95.904833,46.933729 91.849253,41.488633 88.73765,39.044279 85.62651,36.599807 82.51544,34.154925 c -3.16715,-1.72208 -6.33392,-3.444354 -9.50048,-5.16693"
+ sodipodi:nodetypes="ccccccc" />
+ <path
+ style="fill:none;stroke:#000000;stroke-width:0.79375;stroke-miterlimit:4;stroke-dasharray:3.175, 1.5875;stroke-dashoffset:0;marker-end:url(#Arrow1Mend-8)"
+ d="m 218.16641,119.0867 c 0,-58.840879 0,-58.840879 0,-58.840879"
+ id="path1073-3" />
+ <path
+ style="fill:none;stroke:#000000;stroke-width:0.79375;stroke-miterlimit:4;stroke-dasharray:3.175,1.5875;stroke-dashoffset:0;marker-end:url(#Arrow1Mend-6-2)"
+ d="m 218.16641,119.0867 c 66.54601,0 66.54601,0 66.54601,0"
+ id="path1073-9-9" />
+ <path
+ style="fill:none;stroke:#000000;stroke-width:0.79375;stroke-miterlimit:4;stroke-dasharray:none"
+ d="m 176.15813,83.17091 h 84.03933"
+ id="path859-0" />
+ <path
+ style="fill:none;stroke:#000000;stroke-width:0.79375;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0"
+ d="m 176.15813,83.17091 c -2.60054,7.997922 -5.23777,16.108665 -5.72192,23.95726 -0.48416,7.84859 1.16138,15.4681 5.09539,20.65009 3.93402,5.18199 10.10939,7.8649 17.58535,10.24901 7.47596,2.38412 16.23347,4.46131 24.99083,6.53846"
+ id="path5944"
+ inkscape:path-effect="#path-effect5946"
+ inkscape:original-d="m 176.15813,83.17091 c -2.60023,7.998024 -5.23745,16.108768 -7.85665,24.16299 1.65077,7.64282 3.29631,15.26233 4.95143,22.92723 6.21265,2.69925 12.38803,5.38215 18.58183,8.07291 8.75812,2.07754 17.51563,4.15473 26.27304,6.23169"
+ sodipodi:nodetypes="ccccc" />
+ <path
+ style="fill:none;stroke:#000000;stroke-width:0.79375;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0"
+ d="m 260.19746,83.17091 c 2.60054,7.997923 5.23777,16.108662 5.72192,23.95726 0.48415,7.8486 -1.16138,15.46811 -5.09539,20.6501 -3.93402,5.18198 -10.10939,7.86489 -17.60869,10.249 -7.49929,2.38412 -16.30348,4.46131 -25.10752,6.53846"
+ id="path5944-5"
+ inkscape:path-effect="#path-effect5946-8"
+ inkscape:original-d="m 260.19746,83.17091 c 2.60023,7.998024 5.23745,16.108765 7.85665,24.163 -1.65077,7.64282 -3.29631,15.26233 -4.95143,22.92722 -6.21265,2.69925 -12.38803,5.38215 -18.58183,8.07291 -8.80477,2.07766 -17.60896,4.15485 -26.41307,6.23169"
+ sodipodi:nodetypes="ccccc" />
+ <text
+ xml:space="preserve"
+ transform="matrix(0.26458333,0,0,0.26458333,5.1061911,-3.1049598)"
+ id="text143135"
+ style="font-style:italic;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:42.6667px;line-height:1.25;font-family:C059;-inkscape-font-specification:'C059, Italic';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-east-asian:normal;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;white-space:pre;shape-inside:url(#rect143137)"><tspan
+ x="1041"
+ y="438.77869"
+ id="tspan318815">y</tspan></text>
+ <text
+ xml:space="preserve"
+ style="font-style:italic;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:11.2889px;line-height:1.25;font-family:C059;-inkscape-font-specification:'C059, Italic';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-east-asian:normal;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;stroke-width:0.264583"
+ x="215.98643"
+ y="55.73468"
+ id="text178889"><tspan
+ sodipodi:role="line"
+ id="tspan178887"
+ style="font-style:italic;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:11.2889px;font-family:C059;-inkscape-font-specification:'C059, Italic';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-east-asian:normal;stroke-width:0.264583"
+ x="215.98643"
+ y="55.73468">z</tspan></text>
+ <text
+ xml:space="preserve"
+ style="font-style:italic;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:11.2889px;line-height:1.25;font-family:C059;-inkscape-font-specification:'C059, Italic';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-east-asian:normal;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;stroke-width:0.264583"
+ x="118.06785"
+ y="100.01883"
+ id="text196519"><tspan
+ sodipodi:role="line"
+ id="tspan196517"
+ style="font-style:italic;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:11.2889px;font-family:C059;-inkscape-font-specification:'C059, Italic';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-east-asian:normal;stroke-width:0.264583"
+ x="118.06785"
+ y="100.01883">y</tspan></text>
+ <text
+ xml:space="preserve"
+ style="font-style:italic;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:11.2889px;line-height:1.25;font-family:C059;-inkscape-font-specification:'C059, Italic';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-east-asian:normal;letter-spacing:0px;word-spacing:0px;writing-mode:lr-tb;stroke-width:0.264583"
+ x="78.390152"
+ y="19.316904"
+ id="text200649"><tspan
+ sodipodi:role="line"
+ id="tspan200647"
+ style="font-style:italic;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:11.2889px;font-family:C059;-inkscape-font-specification:'C059, Italic';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-east-asian:normal;stroke-width:0.264583"
+ x="78.390152"
+ y="19.316904">x</tspan></text>
+ <circle
+ style="fill:#000000;stroke:none;stroke-width:0.79375;stroke-miterlimit:4;stroke-dasharray:none"
+ id="path206501"
+ cx="72.776947"
+ cy="112.21642"
+ r="1.4552083" />
+ <circle
+