summaryrefslogtreecommitdiff
path: root/content/know/concept/convolution-theorem/index.pdc
diff options
context:
space:
mode:
authorPrefetch2022-01-24 19:29:00 +0100
committerPrefetch2022-01-24 19:29:00 +0100
commit8a9fb5fef2a97af3274290e512816e1a4cac0c02 (patch)
tree4cd3ea9c2c8dacdbfe13d4ebfce9c917a97cdb22 /content/know/concept/convolution-theorem/index.pdc
parentf1b98859343c6f0fb1d1b92c35f00fc61d904ebd (diff)
Rewrite "Lindhard function", split off "dielectric function"
Diffstat (limited to 'content/know/concept/convolution-theorem/index.pdc')
-rw-r--r--content/know/concept/convolution-theorem/index.pdc30
1 files changed, 15 insertions, 15 deletions
diff --git a/content/know/concept/convolution-theorem/index.pdc b/content/know/concept/convolution-theorem/index.pdc
index 2712c21..a14e960 100644
--- a/content/know/concept/convolution-theorem/index.pdc
+++ b/content/know/concept/convolution-theorem/index.pdc
@@ -26,7 +26,7 @@ and $A$ and $B$ are constants from its definition:
$$\begin{aligned}
\boxed{
\begin{aligned}
- A \cdot (f * g)(x) &= \hat{\mathcal{F}}^{-1}\{\tilde{f}(k) \: \tilde{g}(k)\} \\
+ A \cdot (f * g)(x) &= \hat{\mathcal{F}}{}^{-1}\{\tilde{f}(k) \: \tilde{g}(k)\} \\
B \cdot (\tilde{f} * \tilde{g})(k) &= \hat{\mathcal{F}}\{f(x) \: g(x)\}
\end{aligned}
}
@@ -41,12 +41,12 @@ We expand the right-hand side of the theorem and
rearrange the integrals:
$$\begin{aligned}
- \hat{\mathcal{F}}^{-1}\{\tilde{f}(k) \: \tilde{g}(k)\}
- &= B \int_{-\infty}^\infty \tilde{f}(k) \Big( A \int_{-\infty}^\infty g(x') \exp(i s k x') \dd{x'} \Big) \exp(-i s k x) \dd{k}
+ \hat{\mathcal{F}}{}^{-1}\{\tilde{f}(k) \: \tilde{g}(k)\}
+ &= B \int_{-\infty}^\infty \tilde{f}(k) \Big( A \int_{-\infty}^\infty g(x') \exp\!(i s k x') \dd{x'} \Big) \exp\!(-i s k x) \dd{k}
\\
- &= A \int_{-\infty}^\infty g(x') \Big( B \int_{-\infty}^\infty \tilde{f}(k) \exp(- i s k (x - x')) \dd{k} \Big) \dd{x'}
+ &= A \int_{-\infty}^\infty g(x') \Big( B \int_{-\infty}^\infty \tilde{f}(k) \exp\!(- i s k (x - x')) \dd{k} \Big) \dd{x'}
\\
- &= A \int_{-\infty}^\infty g(x') f(x - x') \dd{x'}
+ &= A \int_{-\infty}^\infty g(x') \: f(x - x') \dd{x'}
= A \cdot (f * g)(x)
\end{aligned}$$
@@ -55,11 +55,11 @@ this time starting from a product in the $x$-domain:
$$\begin{aligned}
\hat{\mathcal{F}}\{f(x) \: g(x)\}
- &= A \int_{-\infty}^\infty f(x) \Big( B \int_{-\infty}^\infty \tilde{g}(k') \exp(- i s x k') \dd{k'} \Big) \exp(i s k x) \dd{x}
+ &= A \int_{-\infty}^\infty f(x) \Big( B \int_{-\infty}^\infty \tilde{g}(k') \exp\!(- i s x k') \dd{k'} \Big) \exp\!(i s k x) \dd{x}
\\
- &= B \int_{-\infty}^\infty \tilde{g}(k') \Big( A \int_{-\infty}^\infty f(x) \exp(i s x (k - k')) \dd{x} \Big) \dd{k'}
+ &= B \int_{-\infty}^\infty \tilde{g}(k') \Big( A \int_{-\infty}^\infty f(x) \exp\!(i s x (k - k')) \dd{x} \Big) \dd{k'}
\\
- &= B \int_{-\infty}^\infty \tilde{g}(k') \tilde{f}(k - k') \dd{k'}
+ &= B \int_{-\infty}^\infty \tilde{g}(k') \: \tilde{f}(k - k') \dd{k'}
= B \cdot (\tilde{f} * \tilde{g})(k)
\end{aligned}$$
</div>
@@ -73,10 +73,10 @@ the convolution theorem can also be stated using
the [Laplace transform](/know/concept/laplace-transform/):
$$\begin{aligned}
- \boxed{(f * g)(t) = \hat{\mathcal{L}}^{-1}\{\tilde{f}(s) \: \tilde{g}(s)\}}
+ \boxed{(f * g)(t) = \hat{\mathcal{L}}{}^{-1}\{\tilde{f}(s) \: \tilde{g}(s)\}}
\end{aligned}$$
-Because the inverse Laplace transform $\hat{\mathcal{L}}^{-1}$ is
+Because the inverse Laplace transform $\hat{\mathcal{L}}{}^{-1}$ is
unpleasant, the theorem is often stated using the forward transform
instead:
@@ -95,20 +95,20 @@ because we set both $f(t)$ and $g(t)$ to zero for $t < 0$:
$$\begin{aligned}
\hat{\mathcal{L}}\{(f * g)(t)\}
- &= \int_0^\infty \Big( \int_0^\infty g(t') f(t - t') \dd{t'} \Big) \exp(- s t) \dd{t}
+ &= \int_0^\infty \Big( \int_0^\infty g(t') f(t - t') \dd{t'} \Big) \exp\!(- s t) \dd{t}
\\
- &= \int_0^\infty \Big( \int_0^\infty f(t - t') \exp(- s t) \dd{t} \Big) g(t') \dd{t'}
+ &= \int_0^\infty \Big( \int_0^\infty f(t - t') \exp\!(- s t) \dd{t} \Big) g(t') \dd{t'}
\end{aligned}$$
Then we define a new integration variable $\tau = t - t'$, yielding:
$$\begin{aligned}
\hat{\mathcal{L}}\{(f * g)(t)\}
- &= \int_0^\infty \Big( \int_0^\infty f(\tau) \exp(- s (\tau + t')) \dd{\tau} \Big) g(t') \dd{t'}
+ &= \int_0^\infty \Big( \int_0^\infty f(\tau) \exp\!(- s (\tau + t')) \dd{\tau} \Big) g(t') \dd{t'}
\\
- &= \int_0^\infty \Big( \int_0^\infty f(\tau) \exp(- s \tau) \dd{\tau} \Big) g(t') \exp(- s t') \dd{t'}
+ &= \int_0^\infty \Big( \int_0^\infty f(\tau) \exp\!(- s \tau) \dd{\tau} \Big) g(t') \exp\!(- s t') \dd{t'}
\\
- &= \int_0^\infty \tilde{f}(s) g(t') \exp(- s t') \dd{t'}
+ &= \int_0^\infty \tilde{f}(s) \: g(t') \exp\!(- s t') \dd{t'}
= \tilde{f}(s) \: \tilde{g}(s)
\end{aligned}$$
</div>