summaryrefslogtreecommitdiff
path: root/content/know/concept/imaginary-time
diff options
context:
space:
mode:
authorPrefetch2021-11-21 18:02:35 +0100
committerPrefetch2021-11-21 18:02:35 +0100
commit6505b1fb3399ec4bff97aabda2554764bf305d0f (patch)
treeeccdbd828a383a989d8cbc6e166a22a38a7085dc /content/know/concept/imaginary-time
parentdc3498fd50121eadbdd3ddac5bf950a16e2b50cb (diff)
Expand knowledge base
Diffstat (limited to 'content/know/concept/imaginary-time')
-rw-r--r--content/know/concept/imaginary-time/index.pdc20
1 files changed, 15 insertions, 5 deletions
diff --git a/content/know/concept/imaginary-time/index.pdc b/content/know/concept/imaginary-time/index.pdc
index 55f163a..b68afce 100644
--- a/content/know/concept/imaginary-time/index.pdc
+++ b/content/know/concept/imaginary-time/index.pdc
@@ -145,20 +145,30 @@ $$\begin{aligned}
\hat{A}_I(\tau) \hat{K}_I(\tau, \tau') \hat{B}_I(\tau') \hat{K}_I(\tau', 0) \!\Big)
\end{aligned}$$
-Assuming $\tau > \tau'$,
-we introduce a time-ordering $\mathcal{T}$,
-allowing us to reorder the operators inside,
+We now introduce a time-ordering $\mathcal{T}$,
+letting us reorder the (bosonic) $\hat{K}_I$-operators inside,
and thereby reduce the expression considerably:
$$\begin{aligned}
- \expval*{\hat{A}_H \hat{B}_H}
+ \expval{\mathcal{T}\Big\{\hat{A}_H \hat{B}_H\Big\}}
&= \frac{1}{Z} \Tr\!\Big( \mathcal{T} \Big\{ \hat{K}_I(\hbar \beta, \tau) \hat{K}_I(\tau, \tau') \hat{K}_I(\tau', 0)
\hat{A}_I(\tau) \hat{B}_I(\tau') \Big\} \exp\!(-\beta \hat{H}_{0,S}) \Big)
\\
- &= \frac{1}{Z} \Tr\!\Big( \mathcal{T} \Big\{ \hat{K}_I(\hbar \beta, 0) \hat{A}_I(\tau) \hat{B}_I(\tau') \Big\} \exp\!(-\beta \hat{H}_{0,S}) \Big)
+ &= \frac{1}{Z} \Tr\!\Big( \mathcal{T}\Big\{ \hat{K}_I(\hbar \beta, 0) \hat{A}_I(\tau) \hat{B}_I(\tau') \Big\} \exp\!(-\beta \hat{H}_{0,S}) \Big)
\end{aligned}$$
Where $Z = \Tr\!\big(\exp\!(-\beta \hat{H}_S)\big) = \Tr\!\big(\hat{K}_I(\hbar \beta, 0) \exp\!(-\beta \hat{H}_{0,S})\big)$.
+If we now define $\expval{}_0$ as the expectation value with respect
+to the unperturbed equilibrium involving only $\hat{H}_{0,S}$,
+we arrive at the following way of writing this time-ordered expectation:
+
+$$\begin{aligned}
+ \boxed{
+ \expval{\mathcal{T}\Big\{\hat{A}_H \hat{B}_H\Big\}}
+ = \frac{\expval{\mathcal{T}\Big\{ \hat{K}_I(\hbar \beta, 0) \hat{A}_I(\tau) \hat{B}_I(\tau') \Big\}}_0}{\expval{\hat{K}_I(\hbar \beta, 0)}_0}
+ }
+\end{aligned}$$
+
For another application of imaginary time,
see e.g. the [Matsubara Green's function](/know/concept/matsubara-greens-function/).