summaryrefslogtreecommitdiff
path: root/content/know/concept/ion-sound-wave
diff options
context:
space:
mode:
authorPrefetch2022-01-08 14:09:13 +0100
committerPrefetch2022-01-08 14:13:44 +0100
commit7c2d27ca89c5b096694b950c766e50df2dc87001 (patch)
treeed9ee3c02fe746350b9e0714f4648a554ade52b0 /content/know/concept/ion-sound-wave
parent63966407338ed0bdb061ddfd67f8940c2ccb51d2 (diff)
Minor fixes, rename "Ion Sound Wave" and "Ito Process"
Diffstat (limited to 'content/know/concept/ion-sound-wave')
-rw-r--r--content/know/concept/ion-sound-wave/index.pdc265
1 files changed, 265 insertions, 0 deletions
diff --git a/content/know/concept/ion-sound-wave/index.pdc b/content/know/concept/ion-sound-wave/index.pdc
new file mode 100644
index 0000000..5cba1d0
--- /dev/null
+++ b/content/know/concept/ion-sound-wave/index.pdc
@@ -0,0 +1,265 @@
+---
+title: "Ion sound wave"
+firstLetter: "I"
+publishDate: 2021-10-31
+categories:
+- Physics
+- Plasma physics
+
+date: 2021-10-31T09:38:14+01:00
+draft: false
+markup: pandoc
+---
+
+# Ion sound wave
+
+In a plasma, electromagnetic interactions allow
+compressional longitudinal waves to propagate
+at lower temperatures and pressures
+than would be possible in a neutral gas.
+
+We start from the [two-fluid model's](/know/concept/two-fluid-equations/) momentum equations,
+rewriting the [electric field](/know/concept/electric-field/) $\vb{E} = - \nabla \phi$
+and the pressure gradient $\nabla p = \gamma k_B T \nabla n$,
+and arguing that $m_e \approx 0$ because $m_e \ll m_i$:
+
+$$\begin{aligned}
+ m_i n_i \frac{\mathrm{D} \vb{u}_i}{\mathrm{D} t}
+ &= - q_i n_i \nabla \phi - \gamma_i k_B T_i \nabla n_i
+ \\
+ 0
+ &= - q_e n_e \nabla \phi - \gamma_e k_B T_e \nabla n_e
+\end{aligned}$$
+
+Note that we neglect ion-electron collisions,
+and allow for separate values of $\gamma$.
+We split $n_i$, $n_e$, $\vb{u}_i$ and $\phi$ into an equilibrium
+(subscript $0$) and a perturbation (subscript $1$):
+
+$$\begin{aligned}
+ n_i
+ = n_{i0} + n_{i1}
+ \qquad
+ n_e
+ = n_{e0} + n_{e1}
+ \qquad
+ \vb{u}_i
+ = \vb{u}_{i0} + \vb{u}_{i1}
+ \qquad
+ \phi
+ = \phi_0 + \phi_1
+\end{aligned}$$
+
+Where the perturbations $n_{i1}$, $n_{e1}$, $\vb{u}_{i1}$ and $\phi_1$ are tiny,
+and the equilibrium components $n_{i0}$, $n_{e0}$, $\vb{u}_{i0}$ and $\phi_0$
+by definition satisfy:
+
+$$\begin{aligned}
+ \pdv{n_{i0}}{t} = 0
+ \qquad
+ \frac{\mathrm{D} \vb{u}_{i0}}{\mathrm{D} t} = 0
+ \qquad
+ \nabla n_{i0} = \nabla n_{e0} = 0
+ \qquad
+ \vb{u}_{i0} = 0
+ \qquad
+ \phi_0 = 0
+\end{aligned}$$
+
+Inserting this decomposition into the momentum equations
+yields new equations.
+Note that we will implicitly use $\vb{u}_{i0} = 0$
+to pretend that the [material derivative](/know/concept/material-derivative/)
+$\mathrm{D}/\mathrm{D} t$ is linear:
+
+$$\begin{aligned}
+ m_i (n_{i0} \!+\! n_{i1}) \frac{\mathrm{D} (\vb{u}_{i0} \!+\! \vb{u}_{i1})}{\mathrm{D} t}
+ &= - q_i (n_{i0} \!+\! n_{i1}) \nabla (\phi_0 \!+\! \phi_1) - \gamma_i k_B T_i \nabla (n_{i0} \!+\! n_{i1})
+ \\
+ 0
+ &= - q_e (n_{e0} \!+\! n_{e1}) \nabla (\phi_0 \!+\! \phi_1) - \gamma_e k_B T_e \nabla (n_{e0} \!+\! n_{e1})
+\end{aligned}$$
+
+Using the defined properties of the equilibrium components
+$n_{i0}$, $n_{e0}$, $\vb{u}_{i0}$ and $\phi_0$,
+and neglecting all products of perturbations for being small,
+this reduces to:
+
+$$\begin{aligned}
+ m_i n_{i0} \pdv{\vb{u}_{i1}}{t}
+ &= - q_i n_{i0} \nabla \phi_1 - \gamma_i k_B T_i \nabla n_{i1}
+ \\
+ 0
+ &= - q_e n_{e0} \nabla \phi_1 - \gamma_e k_B T_e \nabla n_{e1}
+\end{aligned}$$
+
+Because we are interested in linear waves,
+we make the following plane-wave ansatz:
+
+$$\begin{aligned}
+ n_{i1}(\vb{r}, t)
+ &= n_{i1} \exp\!(i \vb{k} \cdot \vb{r} - i \omega t)
+ \\
+ n_{e1}(\vb{r}, t)
+ &= n_{e1} \exp\!(i \vb{k} \cdot \vb{r} - i \omega t)
+ \\
+ \vb{u}_{i1}(\vb{r}, t)
+ &= \vb{u}_{i1} \exp\!(i \vb{k} \cdot \vb{r} - i \omega t)
+ \\
+ \phi_1(\vb{r}, t)
+ &= \phi_1 \,\,\exp\!(i \vb{k} \cdot \vb{r} - i \omega t)
+\end{aligned}$$
+
+Which we then insert into the momentum equations for the ions and electrons:
+
+$$\begin{aligned}
+ - i \omega m_i n_{i0} \vb{u}_{i1}
+ &= - i \vb{k} q_i n_{i0} \phi_1 - i \vb{k} \gamma_i k_B T_i n_{i1}
+ \\
+ 0
+ &= - i \vb{k} q_e n_{e0} \phi_1 - i \vb{k} \gamma_e k_B T_e n_{e1}
+\end{aligned}$$
+
+The electron equation can easily be rearranged
+to get a relation between $n_{e1}$ and $n_{e0}$:
+
+$$\begin{aligned}
+ i \vb{k} \gamma_e k_B T_e n_{e1}
+ = - i \vb{k} q_e n_{e0} \phi_1
+ \quad \implies \quad
+ n_{e1}
+ = - \frac{q_e \phi_1}{\gamma_e k_B T_e} n_{e0}
+\end{aligned}$$
+
+Due to their low mass, the electrons' heat conductivity
+can be regarded as infinite compared to the ions'.
+In that case, all electron gas compression is isothermal,
+meaning it obeys the ideal gas law $p_e = n_e k_B T_e$, so that $\gamma_e = 1$.
+Note that this yields the first-order term of a Taylor expansion
+of the [Boltzmann relation](/know/concept/boltzmann-relation/).
+
+At equilibrium, quasi-neutrality demands that $n_{i0} = n_{e0} = n_0$,
+so we can rearrange the above relation to $n_0 = - k_B T_e n_{e1} / (q_e \phi_1)$,
+which we insert into the ion equation to get:
+
+$$\begin{gathered}
+ i \omega m_i \frac{k_B T_e n_{e1}}{q_e \phi_1} \vb{u}_{i1}
+ = - i q_i \frac{k_B T_e n_{e1}}{q_e \phi_1} \phi_1 \vb{k} - i \gamma_i k_B T_i n_{i1} \vb{k}
+ \\
+ \implies \qquad
+ \omega m_i \frac{T_e n_{e1}}{q_e \phi_1} \vb{k} \cdot \vb{u}_{i1}
+ = T_e n_{e1} |\vb{k}|^2 - \gamma_i T_i n_{i1} |\vb{k}|^2
+\end{gathered}$$
+
+Where we have taken the dot product with $\vb{k}$,
+and used that $q_i / q_e = -1$.
+In order to simplify this equation,
+we turn to the two-fluid ion continuity relation:
+
+$$\begin{aligned}
+ 0
+ &= \pdv{(n_{i0} \!+\! n_{i1})}{t} + \nabla \cdot \Big( (n_{i0} \!+\! n_{i1}) (\vb{u}_{i0} \!+\! \vb{u}_{i1}) \Big)
+ \approx \pdv{n_{i1}}{t} + n_{i0} \nabla \cdot \vb{u}_{i1}
+\end{aligned}$$
+
+Then we insert our plane-wave ansatz,
+and substitute $n_{i0} = n_0$ as before, yielding:
+
+$$\begin{aligned}
+ 0
+ = - i \omega n_{i1} + i n_{i0} \vb{k} \cdot \vb{u}_{i1}
+ \quad \implies \quad
+ \vb{k} \cdot \vb{u}_{i1}
+ = \omega \frac{n_{i1}}{n_{i0}}
+ = \omega \frac{q_e n_{i1} \phi_1}{k_B T_e n_{e1}}
+\end{aligned}$$
+
+Substituting this in the ion momentum equation
+leads us to a dispersion relation $\omega(\vb{k})$:
+
+$$\begin{gathered}
+ \omega^2 m_i \frac{T_e n_{e1}}{q_e \phi_1} \frac{q_e n_{i1} \phi_1}{k_B T_e n_{e1}}
+ = \omega^2 m_i \frac{n_{i1}}{k_B}
+ = |\vb{k}|^2 \big( T_e n_{e1} - \gamma_i T_i n_{i1} \big)
+ \\
+ \implies \qquad
+ \omega^2
+ = \frac{|\vb{k}|^2}{m_i} \Big( k_B T_e \frac{n_{e1}}{n_{i1}} - \gamma_i k_B T_i \Big)
+\end{gathered}$$
+
+Finally, we would like to find an expression for $n_{e1} / n_{i1}$.
+It cannot be $1$, because then $\phi_1$ could not be nonzero,
+according to [Gauss' law](/know/concept/maxwells-equations/).
+Nevertheless, authors often ignore this fact,
+thereby making the so-called **plasma approximation**.
+We will not, and therefore turn to Gauss' law:
+
+$$\begin{aligned}
+ \varepsilon_0 \nabla \cdot \vb{E}
+ = - \varepsilon_0 \nabla^2 \phi_1
+ = q_i n_i - q_e n_e
+ = - q_e (n_{i1} - n_{e1})
+\end{aligned}$$
+
+One final time, we insert our plane-wave ansatz,
+and use our Boltzmann-like relation between $n_{e1}$ and $n_{e0}$
+to substitute $\phi_1 = - k_B T_e n_{e1} / (q_e n_{e0})$:
+
+$$\begin{gathered}
+ q_e (n_{e1} - n_{i1})
+ = |\vb{k}|^2 \varepsilon_0 \phi_1
+ = - |\vb{k}|^2 \varepsilon_0 \frac{k_B T_e n_{e1}}{q_e n_{e0}}
+ \\
+ \implies \qquad
+ n_{i1}
+ = n_{e1} + |\vb{k}|^2 \varepsilon_0 \frac{k_B T_e n_{e1}}{q_e^2 n_{e0}}
+ = n_{e1} \big( 1 + |\vb{k}|^2 \lambda_{De}^2 \big)
+\end{gathered}$$
+
+Where $\lambda_{De}$ is the electron [Debye length](/know/concept/debye-length/).
+We thus reach the following dispersion relation,
+which governs **ion sound waves** or **ion acoustic waves**:
+
+$$\begin{aligned}
+ \boxed{
+ \omega^2
+ = \frac{|\vb{k}|^2}{m_i} \bigg( \frac{k_B T_e}{1 + |\vb{k}|^2 \lambda_{De}^2} + \gamma_i k_B T_i \bigg)
+ }
+\end{aligned}$$
+
+The aforementioned plasma approximation is valid if $|\vb{k}| \lambda_{De} \ll 1$,
+which is often reasonable,
+in which case this dispersion relation reduces to:
+
+$$\begin{aligned}
+ \omega^2
+ = \frac{|\vb{k}|^2}{m_i} \bigg( k_B T_e + \gamma_i k_B T_i \bigg)
+\end{aligned}$$
+
+The phase velocity $v_s$ of these waves,
+i.e. the speed of sound, is then given by:
+
+$$\begin{aligned}
+ \boxed{
+ v_s
+ = \frac{\omega}{k}
+ = \sqrt{\frac{k_B T_e}{m_i} + \frac{\gamma_i k_B T_i}{m_i}}
+ }
+\end{aligned}$$
+
+Curiously, unlike a neutral gas,
+this velocity is nonzero even if $T_i = 0$,
+meaning that the waves still exist then.
+In fact, usually the electron temperature $T_e$ dominates $T_e \gg T_i$,
+even though the main feature of these waves
+is that they involve ion density fluctuations $n_{i1}$.
+
+
+
+## References
+1. F.F. Chen,
+ *Introduction to plasma physics and controlled fusion*,
+ 3rd edition, Springer.
+2. M. Salewski, A.H. Nielsen,
+ *Plasma physics: lecture notes*,
+ 2021, unpublished.