diff options
author | Prefetch | 2022-01-08 14:09:13 +0100 |
---|---|---|
committer | Prefetch | 2022-01-08 14:13:44 +0100 |
commit | 7c2d27ca89c5b096694b950c766e50df2dc87001 (patch) | |
tree | ed9ee3c02fe746350b9e0714f4648a554ade52b0 /content/know/concept/ion-sound-waves | |
parent | 63966407338ed0bdb061ddfd67f8940c2ccb51d2 (diff) |
Minor fixes, rename "Ion Sound Wave" and "Ito Process"
Diffstat (limited to 'content/know/concept/ion-sound-waves')
-rw-r--r-- | content/know/concept/ion-sound-waves/index.pdc | 265 |
1 files changed, 0 insertions, 265 deletions
diff --git a/content/know/concept/ion-sound-waves/index.pdc b/content/know/concept/ion-sound-waves/index.pdc deleted file mode 100644 index c56188b..0000000 --- a/content/know/concept/ion-sound-waves/index.pdc +++ /dev/null @@ -1,265 +0,0 @@ ---- -title: "Ion sound waves" -firstLetter: "I" -publishDate: 2021-10-31 -categories: -- Physics -- Plasma physics - -date: 2021-10-31T09:38:14+01:00 -draft: false -markup: pandoc ---- - -# Ion sound waves - -In a plasma, electromagnetic interactions allow -compressional longitudinal waves to propagate -at lower temperatures and pressures -than would be possible in a neutral gas. - -We start from the [two-fluid model's](/know/concept/two-fluid-equations/) momentum equations, -rewriting the [electric field](/know/concept/electric-field/) $\vb{E} = - \nabla \phi$ -and the pressure gradient $\nabla p = \gamma k_B T \nabla n$, -and arguing that $m_e \approx 0$ because $m_e \ll m_i$: - -$$\begin{aligned} - m_i n_i \frac{\mathrm{D} \vb{u}_i}{\mathrm{D} t} - &= - q_i n_i \nabla \phi - \gamma_i k_B T_i \nabla n_i - \\ - 0 - &= - q_e n_e \nabla \phi - \gamma_e k_B T_e \nabla n_e -\end{aligned}$$ - -Note that we neglect ion-electron collisions, -and allow for separate values of $\gamma$. -We split $n_i$, $n_e$, $\vb{u}_i$ and $\phi$ into an equilibrium -(subscript $0$) and a perturbation (subscript $1$): - -$$\begin{aligned} - n_i - = n_{i0} + n_{i1} - \qquad - n_e - = n_{e0} + n_{e1} - \qquad - \vb{u}_i - = \vb{u}_{i0} + \vb{u}_{i1} - \qquad - \phi - = \phi_0 + \phi_1 -\end{aligned}$$ - -Where the perturbations $n_{i1}$, $n_{e1}$, $\vb{u}_{i1}$ and $\phi_1$ are tiny, -and the equilibrium components $n_{i0}$, $n_{e0}$, $\vb{u}_{i0}$ and $\phi_0$ -by definition satisfy: - -$$\begin{aligned} - \pdv{n_{i0}}{t} = 0 - \qquad - \frac{\mathrm{D} \vb{u}_{i0}}{\mathrm{D} t} = 0 - \qquad - \nabla n_{i0} = \nabla n_{e0} = 0 - \qquad - \vb{u}_{i0} = 0 - \qquad - \phi_0 = 0 -\end{aligned}$$ - -Inserting this decomposition into the momentum equations -yields new equations. -Note that we will implicitly use $\vb{u}_{i0} = 0$ -to pretend that the [material derivative](/know/concept/material-derivative/) -$\mathrm{D}/\mathrm{D} t$ is linear: - -$$\begin{aligned} - m_i (n_{i0} \!+\! n_{i1}) \frac{\mathrm{D} (\vb{u}_{i0} \!+\! \vb{u}_{i1})}{\mathrm{D} t} - &= - q_i (n_{i0} \!+\! n_{i1}) \nabla (\phi_0 \!+\! \phi_1) - \gamma_i k_B T_i \nabla (n_{i0} \!+\! n_{i1}) - \\ - 0 - &= - q_e (n_{e0} \!+\! n_{e1}) \nabla (\phi_0 \!+\! \phi_1) - \gamma_e k_B T_e \nabla (n_{e0} \!+\! n_{e1}) -\end{aligned}$$ - -Using the defined properties of the equilibrium components -$n_{i0}$, $n_{e0}$, $\vb{u}_{i0}$ and $\phi_0$, -and neglecting all products of perturbations for being small, -this reduces to: - -$$\begin{aligned} - m_i n_{i0} \pdv{\vb{u}_{i1}}{t} - &= - q_i n_{i0} \nabla \phi_1 - \gamma_i k_B T_i \nabla n_{i1} - \\ - 0 - &= - q_e n_{e0} \nabla \phi_1 - \gamma_e k_B T_e \nabla n_{e1} -\end{aligned}$$ - -Because we are interested in linear waves, -we make the following plane-wave ansatz: - -$$\begin{aligned} - n_{i1}(\vb{r}, t) - &= n_{i1} \exp\!(i \vb{k} \cdot \vb{r} - i \omega t) - \\ - n_{e1}(\vb{r}, t) - &= n_{e1} \exp\!(i \vb{k} \cdot \vb{r} - i \omega t) - \\ - \vb{u}_{i1}(\vb{r}, t) - &= \vb{u}_{i1} \exp\!(i \vb{k} \cdot \vb{r} - i \omega t) - \\ - \phi_1(\vb{r}, t) - &= \phi_1 \,\,\exp\!(i \vb{k} \cdot \vb{r} - i \omega t) -\end{aligned}$$ - -Which we then insert into the momentum equations for the ions and electrons: - -$$\begin{aligned} - - i \omega m_i n_{i0} \vb{u}_{i1} - &= - i \vb{k} q_i n_{i0} \phi_1 - i \vb{k} \gamma_i k_B T_i n_{i1} - \\ - 0 - &= - i \vb{k} q_e n_{e0} \phi_1 - i \vb{k} \gamma_e k_B T_e n_{e1} -\end{aligned}$$ - -The electron equation can easily be rearranged -to get a relation between $n_{e1}$ and $n_{e0}$: - -$$\begin{aligned} - i \vb{k} \gamma_e k_B T_e n_{e1} - = - i \vb{k} q_e n_{e0} \phi_1 - \quad \implies \quad - n_{e1} - = - \frac{q_e \phi_1}{\gamma_e k_B T_e} n_{e0} -\end{aligned}$$ - -Due to their low mass, the electrons' heat conductivity -can be regarded as infinite compared to the ions'. -In that case, all electron gas compression is isothermal, -meaning it obeys the ideal gas law $p_e = n_e k_B T_e$, so that $\gamma_e = 1$. -Note that this yields the first-order term of a Taylor expansion -of the [Boltzmann relation](/know/concept/boltzmann-relation/). - -At equilibrium, quasi-neutrality demands that $n_{i0} = n_{e0} = n_0$, -so we can rearrange the above relation to $n_0 = - k_B T_e n_{e1} / (q_e \phi_1)$, -which we insert into the ion equation to get: - -$$\begin{gathered} - i \omega m_i \frac{k_B T_e n_{e1}}{q_e \phi_1} \vb{u}_{i1} - = - i q_i \frac{k_B T_e n_{e1}}{q_e \phi_1} \phi_1 \vb{k} - i \gamma_i k_B T_i n_{i1} \vb{k} - \\ - \implies \qquad - \omega m_i \frac{T_e n_{e1}}{q_e \phi_1} \vb{k} \cdot \vb{u}_{i1} - = T_e n_{e1} |\vb{k}|^2 - \gamma_i T_i n_{i1} |\vb{k}|^2 -\end{gathered}$$ - -Where we have taken the dot product with $\vb{k}$, -and used that $q_i / q_e = -1$. -In order to simplify this equation, -we turn to the two-fluid ion continuity relation: - -$$\begin{aligned} - 0 - &= \pdv{(n_{i0} \!+\! n_{i1})}{t} + \nabla \cdot \Big( (n_{i0} \!+\! n_{i1}) (\vb{u}_{i0} \!+\! \vb{u}_{i1}) \Big) - \approx \pdv{n_{i1}}{t} + n_{i0} \nabla \cdot \vb{u}_{i1} -\end{aligned}$$ - -Then we insert our plane-wave ansatz, -and substitute $n_{i0} = n_0$ as before, yielding: - -$$\begin{aligned} - 0 - = - i \omega n_{i1} + i n_{i0} \vb{k} \cdot \vb{u}_{i1} - \quad \implies \quad - \vb{k} \cdot \vb{u}_{i1} - = \omega \frac{n_{i1}}{n_{i0}} - = \omega \frac{q_e n_{i1} \phi_1}{k_B T_e n_{e1}} -\end{aligned}$$ - -Substituting this in the ion momentum equation -leads us to a dispersion relation $\omega(\vb{k})$: - -$$\begin{gathered} - \omega^2 m_i \frac{T_e n_{e1}}{q_e \phi_1} \frac{q_e n_{i1} \phi_1}{k_B T_e n_{e1}} - = \omega^2 m_i \frac{n_{i1}}{k_B} - = |\vb{k}|^2 \big( T_e n_{e1} - \gamma_i T_i n_{i1} \big) - \\ - \implies \qquad - \omega^2 - = \frac{|\vb{k}|^2}{m_i} \Big( k_B T_e \frac{n_{e1}}{n_{i1}} - \gamma_i k_B T_i \Big) -\end{gathered}$$ - -Finally, we would like to find an expression for $n_{e1} / n_{i1}$. -It cannot be $1$, because then $\phi_1$ could not be nonzero, -according to [Gauss' law](/know/concept/maxwells-equations/). -Nevertheless, authors often ignore this fact, -thereby making the so-called **plasma approximation**. -We will not, and therefore turn to Gauss' law: - -$$\begin{aligned} - \varepsilon_0 \nabla \cdot \vb{E} - = - \varepsilon_0 \nabla^2 \phi_1 - = q_i n_i - q_e n_e - = - q_e (n_{i1} - n_{e1}) -\end{aligned}$$ - -One final time, we insert our plane-wave ansatz, -and use our Boltzmann-like relation between $n_{e1}$ and $n_{e0}$ -to substitute $\phi_1 = - k_B T_e n_{e1} / (q_e n_{e0})$: - -$$\begin{gathered} - q_e (n_{e1} - n_{i1}) - = |\vb{k}|^2 \varepsilon_0 \phi_1 - = - |\vb{k}|^2 \varepsilon_0 \frac{k_B T_e n_{e1}}{q_e n_{e0}} - \\ - \implies \qquad - n_{i1} - = n_{e1} + |\vb{k}|^2 \varepsilon_0 \frac{k_B T_e n_{e1}}{q_e^2 n_{e0}} - = n_{e1} \big( 1 + |\vb{k}|^2 \lambda_{De}^2 \big) -\end{gathered}$$ - -Where $\lambda_{De}$ is the electron [Debye length](/know/concept/debye-length/). -We thus reach the following dispersion relation, -which governs **ion sound waves** or **ion acoustic waves**: - -$$\begin{aligned} - \boxed{ - \omega^2 - = \frac{|\vb{k}|^2}{m_i} \bigg( \frac{k_B T_e}{1 + |\vb{k}|^2 \lambda_{De}^2} + \gamma_i k_B T_i \bigg) - } -\end{aligned}$$ - -The aforementioned plasma approximation is valid if $|\vb{k}| \lambda_{De} \ll 1$, -which is often reasonable, -in which case this dispersion relation reduces to: - -$$\begin{aligned} - \omega^2 - = \frac{|\vb{k}|^2}{m_i} \bigg( k_B T_e + \gamma_i k_B T_i \bigg) -\end{aligned}$$ - -The phase velocity $v_s$ of these waves, -i.e. the speed of sound, is then given by: - -$$\begin{aligned} - \boxed{ - v_s - = \frac{\omega}{k} - = \sqrt{\frac{k_B T_e}{m_i} + \frac{\gamma_i k_B T_i}{m_i}} - } -\end{aligned}$$ - -Curiously, unlike a neutral gas, -this velocity is nonzero even if $T_i = 0$, -meaning that the waves still exist then. -In fact, usually the electron temperature $T_e$ dominates $T_e \gg T_i$, -even though the main feature of these waves -is that they involve ion density fluctuations $n_{i1}$. - - - -## References -1. F.F. Chen, - *Introduction to plasma physics and controlled fusion*, - 3rd edition, Springer. -2. M. Salewski, A.H. Nielsen, - *Plasma physics: lecture notes*, - 2021, unpublished. |