diff options
author | Prefetch | 2021-09-09 17:25:09 +0200 |
---|---|---|
committer | Prefetch | 2021-09-09 17:25:09 +0200 |
commit | e85acc31dbf0c244d34a806f5c700990d374f14c (patch) | |
tree | 4c72c71352a3e29a7caf74b1fd5a32094b455353 /content/know/concept/laguerre-polynomials | |
parent | ea12abd73dd1e624367935353605a3c1327b5281 (diff) |
Expand knowledge base
Diffstat (limited to 'content/know/concept/laguerre-polynomials')
-rw-r--r-- | content/know/concept/laguerre-polynomials/index.pdc | 131 |
1 files changed, 131 insertions, 0 deletions
diff --git a/content/know/concept/laguerre-polynomials/index.pdc b/content/know/concept/laguerre-polynomials/index.pdc new file mode 100644 index 0000000..a4be1ff --- /dev/null +++ b/content/know/concept/laguerre-polynomials/index.pdc @@ -0,0 +1,131 @@ +--- +title: "Laguerre polynomials" +firstLetter: "L" +publishDate: 2021-09-08 +categories: +- Mathematics + +date: 2021-09-08T17:00:48+02:00 +draft: false +markup: pandoc +--- + +# Laguerre polynomials + +The **Laguerre polynomials** are a set of useful functions that arise in physics. +They are the non-singular eigenfunctions $u(x)$ of **Laguerre's equation**, +with the corresponding eigenvalues $n$ being non-negative integers: + +$$\begin{aligned} + \boxed{ + x u'' + (1 - x) u' + n u = 0 + } +\end{aligned}$$ + +The $n$th-order Laguerre polynomial $L_n(x)$ +is given in the form of a *Rodrigues' formula* by: + +$$\begin{aligned} + L_n(x) + &= \frac{1}{n!} \exp\!(x) \dv[n]{x} \big(x^n \exp\!(-x)\big) + \\ + &= \frac{1}{n!} \Big( \dv{x} - 1 \Big)^n x^n +\end{aligned}$$ + +The first couple of Laguerre polynomials $L_n(x)$ are therefore as follows: + +$$\begin{gathered} + L_0(x) = 1 + \qquad \quad + L_1(x) = 1 - x + \qquad \quad + L_2(x) = \frac{1}{2} (x^2 - 4 x + 2) +\end{gathered}$$ + +Based on Laguerre's equation, +**Laguerre's generalized equation** is as follows, +with an arbitrary real (but usually integer) parameter $\alpha$, +and $n$ still a non-negative integer: + +$$\begin{aligned} + \boxed{ + x u'' + (\alpha + 1 - x) u' + n u = 0 + } +\end{aligned}$$ + +Its solutions, denoted by $L_n^\alpha(x)$, +are the **generalized** or **associated Laguerre polynomials**, +which also have a Rodrigues' formula. +Note that if $\alpha = 0$ then $L_n^\alpha = L_n$: + +$$\begin{aligned} + L_n^\alpha(x) + &= \frac{1}{n!} x^{-\alpha} \exp\!(x) \dv[n]{x} \big( x^{n + \alpha} \exp\!(-x) \big) + \\ + &= \frac{x^{-\alpha}}{n!} \Big( \dv{x} - 1 \Big)^n x^{n + \alpha} +\end{aligned}$$ + +The first couple of associated Laguerre polynomials $L_n^\alpha(x)$ are therefore as follows: + +$$\begin{aligned} + L_0^\alpha(x) = 1 + \qquad + L_1^\alpha(x) = \alpha + 1 - x + \qquad + L_2^\alpha(x) = \frac{1}{2} (x^2 - 2 \alpha x - 4 x + \alpha^2 + 3 \alpha + 2) +\end{aligned}$$ + +And then more $L_n^\alpha$ can be computed quickly +using the following recurrence relation: + +$$\begin{aligned} + \boxed{ + L_{n + 1}^\alpha(x) + = \frac{(\alpha + 2 n + 1 - x) L_n^\alpha(x) - (\alpha + n) L_{n - 1}^\alpha(x)}{n + 1} + } +\end{aligned}$$ + +The derivatives are also straightforward to calculate +using the following relation: + +$$\begin{aligned} + \boxed{ + \dv[k]{x} L_n^\alpha(x) + = (-1)^k L_{n - k}^{\alpha + k}(x) + } +\end{aligned}$$ + +Noteworthy is that these polynomials (both normal and associated) +are all mutually orthogonal for $x \in [0, \infty[$, +with respect to the weight function $w(x) \equiv x^\alpha \exp\!(-x)$: + +$$\begin{aligned} + \boxed{ + \braket{L_m^\alpha}{w L_n^\alpha} + = \int_0^\infty L_m^\alpha(x) \: L_n^\alpha(x) \: w(x) \dd{x} + = \frac{\Gamma(n + \alpha + 1)}{n!} \delta_{nm} + } +\end{aligned}$$ + +Where $\delta_{nm}$ is the Kronecker delta. +Moreover, they form a basis in +the [Hilbert space](/know/concept/hilbert-space/) +of all functions $f(x)$ for which $\braket{f}{w f}$ is finite. +Any such $f$ can thus be expanded as follows: + +$$\begin{aligned} + \boxed{ + f(x) + = \sum_{n = 0}^\infty a_n L_n^\alpha(x) + = \sum_{n = 0}^\infty \frac{\braket{L_n}{w f}}{\braket{L_n}{w L_n}} L_n^\alpha(x) + } +\end{aligned}$$ + +Finally, the $L_n^\alpha(x)$ are related to +the [Hermite polynomials](/know/concept/hermite-polynomials/) $H_n(x)$ like so: + +$$\begin{aligned} + H_{2n(x)} &= (-1)^n 2^{2n} n! \: L_n^{-1/2}(x^2) + \\ + H_{2n + 1(x)} &= (-1)^n 2^{2n + 1} n! \: L_n^{1/2}(x^2) +\end{aligned}$$ |