summaryrefslogtreecommitdiff
path: root/content/know/concept/laplace-transform/index.pdc
diff options
context:
space:
mode:
authorPrefetch2022-01-24 19:29:00 +0100
committerPrefetch2022-01-24 19:29:00 +0100
commit8a9fb5fef2a97af3274290e512816e1a4cac0c02 (patch)
tree4cd3ea9c2c8dacdbfe13d4ebfce9c917a97cdb22 /content/know/concept/laplace-transform/index.pdc
parentf1b98859343c6f0fb1d1b92c35f00fc61d904ebd (diff)
Rewrite "Lindhard function", split off "dielectric function"
Diffstat (limited to 'content/know/concept/laplace-transform/index.pdc')
-rw-r--r--content/know/concept/laplace-transform/index.pdc12
1 files changed, 9 insertions, 3 deletions
diff --git a/content/know/concept/laplace-transform/index.pdc b/content/know/concept/laplace-transform/index.pdc
index bd7673b..5e91a04 100644
--- a/content/know/concept/laplace-transform/index.pdc
+++ b/content/know/concept/laplace-transform/index.pdc
@@ -33,6 +33,12 @@ This is solved by restricting the domain of $\tilde{f}(s)$
to $s$ where $\mathrm{Re}\{s\} > s_0$,
for an $s_0$ large enough to compensate for the growth of $f(t)$.
+The **inverse Laplace transform** $\hat{\mathcal{L}}{}^{-1}$ involves complex integration,
+and is therefore a lot more difficult to calculate.
+Fortunately, it is usually avoidable by rewriting a given $s$-space expression
+using [partial fraction decomposition](/know/concept/partial-fraction-decomposition/),
+and then looking up the individual terms.
+
## Derivatives
@@ -42,7 +48,7 @@ This is especially useful for transforming ODEs with variable coefficients:
$$\begin{aligned}
\boxed{
- \tilde{f}'(s) = - \hat{\mathcal{L}}\{t f(t)\}
+ \tilde{f}{}'(s) = - \hat{\mathcal{L}}\{t f(t)\}
}
\end{aligned}$$
@@ -107,9 +113,9 @@ $$\begin{aligned}
\hat{\mathcal{L}} \big\{ f^{(n)}(t) \big\}
&= \int_0^\infty f^{(n)}(t) \exp\!(- s t) \dd{t}
\\
- &= \big[ f^{(n - 1)}(t) \exp\!(- s t) \big]_0^\infty + s \int_0^\infty f^{(n-1)}(t) \exp\!(- s t) \dd{t}
+ &= \Big[ f^{(n - 1)}(t) \exp\!(- s t) \Big]_0^\infty + s \int_0^\infty f^{(n-1)}(t) \exp\!(- s t) \dd{t}
\\
- &= - f^{(n - 1)}(0) + s \big[ f^{(n - 2)}(t) \exp\!(- s t) \big]_0^\infty + s^2 \int_0^\infty f^{(n-2)}(t) \exp\!(- s t) \dd{t}
+ &= - f^{(n - 1)}(0) + s \Big[ f^{(n - 2)}(t) \exp\!(- s t) \Big]_0^\infty + s^2 \int_0^\infty f^{(n-2)}(t) \exp\!(- s t) \dd{t}
\end{aligned}$$
And so on.