1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|
---
title: "Laplace transform"
firstLetter: "L"
publishDate: 2021-07-02
categories:
- Mathematics
- Physics
date: 2021-07-02T15:48:30+02:00
draft: false
markup: pandoc
---
# Laplace transform
The **Laplace transform** is an integral transform
that losslessly converts a function $f(t)$ of a real variable $t$,
into a function $\tilde{f}(s)$ of a complex variable $s$,
where $s$ is sometimes called the **complex frequency**,
analogously to the [Fourier transform](/know/concept/fourier-transform/).
The transform is defined as follows:
$$\begin{aligned}
\boxed{
\tilde{f}(s)
\equiv \hat{\mathcal{L}}\{f(t)\}
\equiv \int_0^\infty f(t) \exp\!(- s t) \dd{t}
}
\end{aligned}$$
Depending on $f(t)$, this integral may diverge.
This is solved by restricting the domain of $\tilde{f}(s)$
to $s$ where $\mathrm{Re}\{s\} > s_0$,
for an $s_0$ large enough to compensate for the growth of $f(t)$.
The **inverse Laplace transform** $\hat{\mathcal{L}}{}^{-1}$ involves complex integration,
and is therefore a lot more difficult to calculate.
Fortunately, it is usually avoidable by rewriting a given $s$-space expression
using [partial fraction decomposition](/know/concept/partial-fraction-decomposition/),
and then looking up the individual terms.
## Derivatives
The derivative of a transformed function is the transform
of the original mutliplied by its variable.
This is especially useful for transforming ODEs with variable coefficients:
$$\begin{aligned}
\boxed{
\tilde{f}{}'(s) = - \hat{\mathcal{L}}\{t f(t)\}
}
\end{aligned}$$
This property generalizes nicely to higher-order derivatives of $s$, so:
$$\begin{aligned}
\boxed{
\dv[n]{\tilde{f}}{s} = (-1)^n \hat{\mathcal{L}}\{t^n f(t)\}
}
\end{aligned}$$
<div class="accordion">
<input type="checkbox" id="proof-dv-s"/>
<label for="proof-dv-s">Proof</label>
<div class="hidden">
<label for="proof-dv-s">Proof.</label>
The exponential $\exp\!(- s t)$ is the only thing that depends on $s$ here:
$$\begin{aligned}
\dv[n]{\tilde{f}}{s}
&= \dv[n]{s} \int_0^\infty f(t) \exp\!(- s t) \dd{t}
\\
&= \int_0^\infty (-t)^n f(t) \exp\!(- s t) \dd{t}
= (-1)^n \hat{\mathcal{L}}\{t^n f(t)\}
\end{aligned}$$
</div>
</div>
The Laplace transform of a derivative introduces the initial conditions into the result.
Notice that $f(0)$ is the initial value in the original $t$-domain:
$$\begin{aligned}
\boxed{
\hat{\mathcal{L}}\{ f'(t) \} = - f(0) + s \tilde{f}(s)
}
\end{aligned}$$
This property generalizes to higher-order derivatives,
although it gets messy quickly.
Once again, the initial values of the lower derivatives appear:
$$\begin{aligned}
\boxed{
\hat{\mathcal{L}} \big\{ f^{(n)}(t) \big\}
= - \sum_{j = 0}^{n - 1} s^j f^{(n - 1 - j)}(0) + s^n \tilde{f}(s)
}
\end{aligned}$$
Where $f^{(n)}(t)$ is shorthand for the $n$th derivative of $f(t)$,
and $f^{(0)}(t) = f(t)$.
As an example, $\hat{\mathcal{L}}\{f'''(t)\}$ becomes
$- f''(0) - s f'(0) - s^2 f(0) + s^3 \tilde{f}(s)$.
<div class="accordion">
<input type="checkbox" id="proof-dv-t"/>
<label for="proof-dv-t">Proof</label>
<div class="hidden">
<label for="proof-dv-t">Proof.</label>
We integrate by parts and use the fact that $\lim_{x \to \infty} \exp\!(-x) = 0$:
$$\begin{aligned}
\hat{\mathcal{L}} \big\{ f^{(n)}(t) \big\}
&= \int_0^\infty f^{(n)}(t) \exp\!(- s t) \dd{t}
\\
&= \Big[ f^{(n - 1)}(t) \exp\!(- s t) \Big]_0^\infty + s \int_0^\infty f^{(n-1)}(t) \exp\!(- s t) \dd{t}
\\
&= - f^{(n - 1)}(0) + s \Big[ f^{(n - 2)}(t) \exp\!(- s t) \Big]_0^\infty + s^2 \int_0^\infty f^{(n-2)}(t) \exp\!(- s t) \dd{t}
\end{aligned}$$
And so on.
By partially integrating $n$ times in total we arrive at the conclusion.
</div>
</div>
## References
1. O. Bang,
*Applied mathematics for physicists: lecture notes*, 2019,
unpublished.
|