diff options
author | Prefetch | 2021-07-04 20:02:27 +0200 |
---|---|---|
committer | Prefetch | 2021-07-04 20:02:27 +0200 |
commit | e5f44d97c6652f262c82b5c796c07a7a22a00e90 (patch) | |
tree | 18a5508b981a0bbbbb1937dc75a72c756cf405f7 /content/know/concept/laplace-transform | |
parent | 805718880c936d778c99fe0d5cfdb238342a83c7 (diff) |
Expand knowledge base
Diffstat (limited to 'content/know/concept/laplace-transform')
-rw-r--r-- | content/know/concept/laplace-transform/index.pdc | 125 |
1 files changed, 125 insertions, 0 deletions
diff --git a/content/know/concept/laplace-transform/index.pdc b/content/know/concept/laplace-transform/index.pdc new file mode 100644 index 0000000..bd7673b --- /dev/null +++ b/content/know/concept/laplace-transform/index.pdc @@ -0,0 +1,125 @@ +--- +title: "Laplace transform" +firstLetter: "L" +publishDate: 2021-07-02 +categories: +- Mathematics +- Physics + +date: 2021-07-02T15:48:30+02:00 +draft: false +markup: pandoc +--- + +# Laplace transform + +The **Laplace transform** is an integral transform +that losslessly converts a function $f(t)$ of a real variable $t$, +into a function $\tilde{f}(s)$ of a complex variable $s$, +where $s$ is sometimes called the **complex frequency**, +analogously to the [Fourier transform](/know/concept/fourier-transform/). +The transform is defined as follows: + +$$\begin{aligned} + \boxed{ + \tilde{f}(s) + \equiv \hat{\mathcal{L}}\{f(t)\} + \equiv \int_0^\infty f(t) \exp\!(- s t) \dd{t} + } +\end{aligned}$$ + +Depending on $f(t)$, this integral may diverge. +This is solved by restricting the domain of $\tilde{f}(s)$ +to $s$ where $\mathrm{Re}\{s\} > s_0$, +for an $s_0$ large enough to compensate for the growth of $f(t)$. + + +## Derivatives + +The derivative of a transformed function is the transform +of the original mutliplied by its variable. +This is especially useful for transforming ODEs with variable coefficients: + +$$\begin{aligned} + \boxed{ + \tilde{f}'(s) = - \hat{\mathcal{L}}\{t f(t)\} + } +\end{aligned}$$ + +This property generalizes nicely to higher-order derivatives of $s$, so: + +$$\begin{aligned} + \boxed{ + \dv[n]{\tilde{f}}{s} = (-1)^n \hat{\mathcal{L}}\{t^n f(t)\} + } +\end{aligned}$$ + +<div class="accordion"> +<input type="checkbox" id="proof-dv-s"/> +<label for="proof-dv-s">Proof</label> +<div class="hidden"> +<label for="proof-dv-s">Proof.</label> +The exponential $\exp\!(- s t)$ is the only thing that depends on $s$ here: + +$$\begin{aligned} + \dv[n]{\tilde{f}}{s} + &= \dv[n]{s} \int_0^\infty f(t) \exp\!(- s t) \dd{t} + \\ + &= \int_0^\infty (-t)^n f(t) \exp\!(- s t) \dd{t} + = (-1)^n \hat{\mathcal{L}}\{t^n f(t)\} +\end{aligned}$$ +</div> +</div> + +The Laplace transform of a derivative introduces the initial conditions into the result. +Notice that $f(0)$ is the initial value in the original $t$-domain: + +$$\begin{aligned} + \boxed{ + \hat{\mathcal{L}}\{ f'(t) \} = - f(0) + s \tilde{f}(s) + } +\end{aligned}$$ + +This property generalizes to higher-order derivatives, +although it gets messy quickly. +Once again, the initial values of the lower derivatives appear: + +$$\begin{aligned} + \boxed{ + \hat{\mathcal{L}} \big\{ f^{(n)}(t) \big\} + = - \sum_{j = 0}^{n - 1} s^j f^{(n - 1 - j)}(0) + s^n \tilde{f}(s) + } +\end{aligned}$$ + +Where $f^{(n)}(t)$ is shorthand for the $n$th derivative of $f(t)$, +and $f^{(0)}(t) = f(t)$. +As an example, $\hat{\mathcal{L}}\{f'''(t)\}$ becomes +$- f''(0) - s f'(0) - s^2 f(0) + s^3 \tilde{f}(s)$. + +<div class="accordion"> +<input type="checkbox" id="proof-dv-t"/> +<label for="proof-dv-t">Proof</label> +<div class="hidden"> +<label for="proof-dv-t">Proof.</label> +We integrate by parts and use the fact that $\lim_{x \to \infty} \exp\!(-x) = 0$: + +$$\begin{aligned} + \hat{\mathcal{L}} \big\{ f^{(n)}(t) \big\} + &= \int_0^\infty f^{(n)}(t) \exp\!(- s t) \dd{t} + \\ + &= \big[ f^{(n - 1)}(t) \exp\!(- s t) \big]_0^\infty + s \int_0^\infty f^{(n-1)}(t) \exp\!(- s t) \dd{t} + \\ + &= - f^{(n - 1)}(0) + s \big[ f^{(n - 2)}(t) \exp\!(- s t) \big]_0^\infty + s^2 \int_0^\infty f^{(n-2)}(t) \exp\!(- s t) \dd{t} +\end{aligned}$$ + +And so on. +By partially integrating $n$ times in total we arrive at the conclusion. +</div> +</div> + + + +## References +1. O. Bang, + *Applied mathematics for physicists: lecture notes*, 2019, + unpublished. |