summaryrefslogtreecommitdiff
path: root/content/know/concept/propagator/index.pdc
diff options
context:
space:
mode:
authorPrefetch2021-07-04 20:02:27 +0200
committerPrefetch2021-07-04 20:02:27 +0200
commite5f44d97c6652f262c82b5c796c07a7a22a00e90 (patch)
tree18a5508b981a0bbbbb1937dc75a72c756cf405f7 /content/know/concept/propagator/index.pdc
parent805718880c936d778c99fe0d5cfdb238342a83c7 (diff)
Expand knowledge base
Diffstat (limited to 'content/know/concept/propagator/index.pdc')
-rw-r--r--content/know/concept/propagator/index.pdc81
1 files changed, 81 insertions, 0 deletions
diff --git a/content/know/concept/propagator/index.pdc b/content/know/concept/propagator/index.pdc
new file mode 100644
index 0000000..2f18c4d
--- /dev/null
+++ b/content/know/concept/propagator/index.pdc
@@ -0,0 +1,81 @@
+---
+title: "Propagator"
+firstLetter: "P"
+publishDate: 2021-07-04
+categories:
+- Physics
+- Quantum mechanics
+
+date: 2021-07-04T10:46:47+02:00
+draft: false
+markup: pandoc
+---
+
+# Propagator
+
+In quantum mechanics, the **propagator** $K(x_f, t_f; x_i, t_i)$
+gives the probability amplitude that a particle
+starting at $x_i$ at $t_i$ ends up at position $x_f$ at $t_f$.
+It is defined as follows:
+
+$$\begin{aligned}
+ \boxed{
+ K(x_f, t_f; x_i, t_i)
+ \equiv \matrixel{x_f}{\hat{U}(t_f, t_i)}{x_i}
+ }
+\end{aligned}$$
+
+Where $\hat{U} \equiv \exp\!(- i t \hat{H} / \hbar)$ is the time-evolution operator.
+The probability that a particle travels
+from $(x_i, t_i)$ to $(x_f, t_f)$ is then given by:
+
+$$\begin{aligned}
+ P
+ &= \big| K(x_f, t_f; x_i, t_i) \big|^2
+\end{aligned}$$
+
+Given a general (i.e. non-collapsed) initial state $\psi_i(x) \equiv \psi(x, t_i)$,
+we must integrate over $x_i$:
+
+$$\begin{aligned}
+ P
+ &= \bigg| \int_{-\infty}^\infty K(x_f, t_f; x_i, t_i) \: \psi_i(x_i) \dd{x_i} \bigg|^2
+\end{aligned}$$
+
+And if the final state $\psi_f(x) \equiv \psi(x, t_f)$
+is not a basis vector either, then we integrate twice:
+
+$$\begin{aligned}
+ P
+ &= \bigg| \iint_{-\infty}^\infty \psi_f^*(x_f) \: K(x_f, t_f; x_i, t_i) \: \psi_i(x_i) \dd{x_i} \dd{x_f} \bigg|^2
+\end{aligned}$$
+
+Given a $\psi_i(x)$, the propagator can also be used
+to find the full final wave function:
+
+$$\begin{aligned}
+ \boxed{
+ \psi(x_f, t_f)
+ = \int_{-\infty}^\infty \psi_i(x_i) K(x_f, t_f; x_i, t_i) \:dx_i
+ }
+\end{aligned}$$
+
+Sometimes the name "propagator" is also used to refer to
+the so-called *fundamental solution* or *Green's function* $G$
+of the time-dependent Schrödinger equation,
+which is related to $K$ by:
+
+$$\begin{aligned}
+ \boxed{
+ G(x_f, t_f; x_i, t_i)
+ = - \frac{i}{\hbar} \: \Theta(t_f - t_i) \: K(x_f, t_f; x_i, t_i)
+ }
+\end{aligned}$$
+
+Where $\Theta(t)$ is the [Heaviside step function](/know/concept/heaviside-step-function/).
+The definition of $G$ is that it satisfies the following equation,
+where $\delta$ is the [Dirac delta function](/know/concept/dirac-delta-function/):
+
+$$\begin{aligned}
+ \Big( i \hbar \pdv{t_f} - \hat{H} \Big) G = \delta(x_f - x_i) \: \delta(t_f - t_i)
+\end{aligned}$$