diff options
author | Prefetch | 2021-03-08 15:04:06 +0100 |
---|---|---|
committer | Prefetch | 2021-03-08 15:04:06 +0100 |
commit | 540d23bff03bedbc8f68287d71c8b5e7dc54b054 (patch) | |
tree | c3331ad86ea4be57e5c6c8385c9ac75b5dde6227 /content/know/concept/time-dependent-perturbation-theory/index.pdc | |
parent | 7bf913f9bc7ab9f8f03c5530d245cf95e1edb43e (diff) |
Expand knowledge base
Diffstat (limited to 'content/know/concept/time-dependent-perturbation-theory/index.pdc')
-rw-r--r-- | content/know/concept/time-dependent-perturbation-theory/index.pdc | 122 |
1 files changed, 122 insertions, 0 deletions
diff --git a/content/know/concept/time-dependent-perturbation-theory/index.pdc b/content/know/concept/time-dependent-perturbation-theory/index.pdc new file mode 100644 index 0000000..fbb71b2 --- /dev/null +++ b/content/know/concept/time-dependent-perturbation-theory/index.pdc @@ -0,0 +1,122 @@ +--- +title: "Time-dependent perturbation theory" +firstLetter: "T" +publishDate: 2021-03-07 +categories: +- Physics +- Quantum mechanics +- Perturbation + +date: 2021-03-07T11:08:14+01:00 +draft: false +markup: pandoc +--- + +# Time-dependent perturbation theory + +In quantum mechanics, **time-dependent perturbation theory** exists to deal +with time-varying perturbations to the Schrödinger equation. +This is in contrast to [time-independent perturbation theory](/know/concept/time-independent-perturbation-theory/), +where the perturbation is is stationary. + +Let $\hat{H}_0$ be the base time-independent +Hamiltonian, and $\hat{H}_1$ be a time-varying perturbation, with +"bookkeeping" parameter $\lambda$: + +$$\begin{aligned} + \hat{H}(t) = \hat{H}_0 + \lambda \hat{H}_1(t) +\end{aligned}$$ + +We assume that the unperturbed time-independent problem +$\hat{H}_0 \ket{n} = E_n \ket{n}$ has already been solved, such that the +full solution is: + +$$\begin{aligned} + \ket{\Psi_0(t)} = \sum_{n} c_n \ket{n} \exp(- i E_n t / \hbar) +\end{aligned}$$ + +Since these $\ket{n}$ form a complete basis, the perturbed wave function +can be written in the same form, but with time-dependent coefficients $c_n(t)$: + +$$\begin{aligned} + \ket{\Psi(t)} = \sum_{n} c_n(t) \ket{n} \exp(- i E_n t / \hbar) +\end{aligned}$$ + +We insert this ansatz in the time-dependent Schrödinger equation, and +reduce it using the known unperturbed time-independent problem: + +$$\begin{aligned} + 0 + &= \hat{H}_0 \ket{\Psi(t)} + \lambda \hat{H}_1 \ket{\Psi(t)} - i \hbar \dv{t} \ket{\Psi(t)} + \\ + &= \sum_{n} + \Big( c_n \hat{H}_0 \ket{n} + \lambda c_n \hat{H}_1 \ket{n} - c_n E_n \ket{n} - i \hbar \dv{c_n}{t} \ket{n} \Big) \exp(- i E_n t / \hbar) + \\ + &= \sum_{n} \Big( \lambda c_n \hat{H}_1 \ket{n} - i \hbar \dv{c_n}{t} \ket{n} \Big) \exp(- i E_n t / \hbar) +\end{aligned}$$ + +We then take the inner product with an arbitrary stationary basis state $\ket{m}$: + +$$\begin{aligned} + 0 + &= \sum_{n} \Big( \lambda c_n \matrixel{m}{\hat{H}_1}{n} - i \hbar \frac{d c_n}{dt} \braket{m}{n} \Big) \exp(- i E_n t / \hbar) +\end{aligned}$$ + +Thanks to orthonormality, this removes the latter term from the summation: + +$$\begin{aligned} + i \hbar \frac{d c_m}{dt} \exp(- i E_m t / \hbar) + &= \lambda \sum_{n} c_n \matrixel{m}{\hat{H}_1}{n} \exp(- i E_n t / \hbar) +\end{aligned}$$ + +We divide by the left-hand exponential and define +$\omega_{mn} = (E_m - E_n) / \hbar$ to get: + +$$\begin{aligned} + \boxed{ + i \hbar \frac{d c_m}{dt} + = \lambda \sum_{n} c_n(t) \matrixel{m}{\hat{H}_1(t)}{n} \exp(i \omega_{mn} t) + } +\end{aligned}$$ + +So far, we have not invoked any approximation, +so we can analytically find $c_n(t)$ for some simple systems. +Furthermore, it is useful to write this equation in integral form instead: + +$$\begin{aligned} + c_m(t) + = c_m(0) - \lambda \frac{i}{\hbar} \sum_{n} \int_0^t c_n(\tau) \matrixel{m}{\hat{H}_1(\tau)}{n} \exp(i \omega_{mn} \tau) \dd{\tau} +\end{aligned}$$ + +If this cannot be solved exactly, we must approximate it. We expand +$c_m(t)$ in the usual way, with the initial condition $c_m^{(j)}(0) = 0$ +for $j > 0$: + +$$\begin{aligned} + c_m(t) = c_m^{(0)} + \lambda c_m^{(1)}(t) + \lambda^2 c_m^{(2)}(t) + ... +\end{aligned}$$ + +We then insert this into the integral and collect the non-zero orders of $\lambda$: + +$$\begin{aligned} + c_m^{(1)}(t) + &= - \frac{i}{\hbar} \sum_{n} \int_0^t c_n^{(0)} \matrixel{m}{\hat{H}_1(\tau)}{n} \exp(i \omega_{mn} \tau) \dd{\tau} + \\ + c_m^{(2)}(t) + &= - \frac{i}{\hbar} \sum_{n} + \int_0^t c_n^{(1)}(\tau) \matrixel{m}{\hat{H}_1(\tau)}{n} \exp(i \omega_{mn} \tau) \dd{\tau} + \\ + c_m^{(3)}(t) + &= - \frac{i}{\hbar} \sum_{n} + \int_0^t c_n^{(2)}(\tau) \matrixel{m}{\hat{H}_1(\tau)}{n} \exp(i \omega_{mn} \tau) \dd{\tau} +\end{aligned}$$ + +And so forth. The pattern here is clear: we can calculate the $(j\!+\!1)$th +correction using only our previous result for the $j$th correction. +We cannot go any further than this without considering a specific perturbation $\hat{H}_1(t)$. + + +## References +1. D.J. Griffiths, D.F. Schroeter, + *Introduction to quantum mechanics*, 3rd edition, + Cambridge. |