summaryrefslogtreecommitdiff
path: root/content/know/concept/time-dependent-perturbation-theory/index.pdc
diff options
context:
space:
mode:
Diffstat (limited to 'content/know/concept/time-dependent-perturbation-theory/index.pdc')
-rw-r--r--content/know/concept/time-dependent-perturbation-theory/index.pdc122
1 files changed, 122 insertions, 0 deletions
diff --git a/content/know/concept/time-dependent-perturbation-theory/index.pdc b/content/know/concept/time-dependent-perturbation-theory/index.pdc
new file mode 100644
index 0000000..fbb71b2
--- /dev/null
+++ b/content/know/concept/time-dependent-perturbation-theory/index.pdc
@@ -0,0 +1,122 @@
+---
+title: "Time-dependent perturbation theory"
+firstLetter: "T"
+publishDate: 2021-03-07
+categories:
+- Physics
+- Quantum mechanics
+- Perturbation
+
+date: 2021-03-07T11:08:14+01:00
+draft: false
+markup: pandoc
+---
+
+# Time-dependent perturbation theory
+
+In quantum mechanics, **time-dependent perturbation theory** exists to deal
+with time-varying perturbations to the Schrödinger equation.
+This is in contrast to [time-independent perturbation theory](/know/concept/time-independent-perturbation-theory/),
+where the perturbation is is stationary.
+
+Let $\hat{H}_0$ be the base time-independent
+Hamiltonian, and $\hat{H}_1$ be a time-varying perturbation, with
+"bookkeeping" parameter $\lambda$:
+
+$$\begin{aligned}
+ \hat{H}(t) = \hat{H}_0 + \lambda \hat{H}_1(t)
+\end{aligned}$$
+
+We assume that the unperturbed time-independent problem
+$\hat{H}_0 \ket{n} = E_n \ket{n}$ has already been solved, such that the
+full solution is:
+
+$$\begin{aligned}
+ \ket{\Psi_0(t)} = \sum_{n} c_n \ket{n} \exp(- i E_n t / \hbar)
+\end{aligned}$$
+
+Since these $\ket{n}$ form a complete basis, the perturbed wave function
+can be written in the same form, but with time-dependent coefficients $c_n(t)$:
+
+$$\begin{aligned}
+ \ket{\Psi(t)} = \sum_{n} c_n(t) \ket{n} \exp(- i E_n t / \hbar)
+\end{aligned}$$
+
+We insert this ansatz in the time-dependent Schrödinger equation, and
+reduce it using the known unperturbed time-independent problem:
+
+$$\begin{aligned}
+ 0
+ &= \hat{H}_0 \ket{\Psi(t)} + \lambda \hat{H}_1 \ket{\Psi(t)} - i \hbar \dv{t} \ket{\Psi(t)}
+ \\
+ &= \sum_{n}
+ \Big( c_n \hat{H}_0 \ket{n} + \lambda c_n \hat{H}_1 \ket{n} - c_n E_n \ket{n} - i \hbar \dv{c_n}{t} \ket{n} \Big) \exp(- i E_n t / \hbar)
+ \\
+ &= \sum_{n} \Big( \lambda c_n \hat{H}_1 \ket{n} - i \hbar \dv{c_n}{t} \ket{n} \Big) \exp(- i E_n t / \hbar)
+\end{aligned}$$
+
+We then take the inner product with an arbitrary stationary basis state $\ket{m}$:
+
+$$\begin{aligned}
+ 0
+ &= \sum_{n} \Big( \lambda c_n \matrixel{m}{\hat{H}_1}{n} - i \hbar \frac{d c_n}{dt} \braket{m}{n} \Big) \exp(- i E_n t / \hbar)
+\end{aligned}$$
+
+Thanks to orthonormality, this removes the latter term from the summation:
+
+$$\begin{aligned}
+ i \hbar \frac{d c_m}{dt} \exp(- i E_m t / \hbar)
+ &= \lambda \sum_{n} c_n \matrixel{m}{\hat{H}_1}{n} \exp(- i E_n t / \hbar)
+\end{aligned}$$
+
+We divide by the left-hand exponential and define
+$\omega_{mn} = (E_m - E_n) / \hbar$ to get:
+
+$$\begin{aligned}
+ \boxed{
+ i \hbar \frac{d c_m}{dt}
+ = \lambda \sum_{n} c_n(t) \matrixel{m}{\hat{H}_1(t)}{n} \exp(i \omega_{mn} t)
+ }
+\end{aligned}$$
+
+So far, we have not invoked any approximation,
+so we can analytically find $c_n(t)$ for some simple systems.
+Furthermore, it is useful to write this equation in integral form instead:
+
+$$\begin{aligned}
+ c_m(t)
+ = c_m(0) - \lambda \frac{i}{\hbar} \sum_{n} \int_0^t c_n(\tau) \matrixel{m}{\hat{H}_1(\tau)}{n} \exp(i \omega_{mn} \tau) \dd{\tau}
+\end{aligned}$$
+
+If this cannot be solved exactly, we must approximate it. We expand
+$c_m(t)$ in the usual way, with the initial condition $c_m^{(j)}(0) = 0$
+for $j > 0$:
+
+$$\begin{aligned}
+ c_m(t) = c_m^{(0)} + \lambda c_m^{(1)}(t) + \lambda^2 c_m^{(2)}(t) + ...
+\end{aligned}$$
+
+We then insert this into the integral and collect the non-zero orders of $\lambda$:
+
+$$\begin{aligned}
+ c_m^{(1)}(t)
+ &= - \frac{i}{\hbar} \sum_{n} \int_0^t c_n^{(0)} \matrixel{m}{\hat{H}_1(\tau)}{n} \exp(i \omega_{mn} \tau) \dd{\tau}
+ \\
+ c_m^{(2)}(t)
+ &= - \frac{i}{\hbar} \sum_{n}
+ \int_0^t c_n^{(1)}(\tau) \matrixel{m}{\hat{H}_1(\tau)}{n} \exp(i \omega_{mn} \tau) \dd{\tau}
+ \\
+ c_m^{(3)}(t)
+ &= - \frac{i}{\hbar} \sum_{n}
+ \int_0^t c_n^{(2)}(\tau) \matrixel{m}{\hat{H}_1(\tau)}{n} \exp(i \omega_{mn} \tau) \dd{\tau}
+\end{aligned}$$
+
+And so forth. The pattern here is clear: we can calculate the $(j\!+\!1)$th
+correction using only our previous result for the $j$th correction.
+We cannot go any further than this without considering a specific perturbation $\hat{H}_1(t)$.
+
+
+## References
+1. D.J. Griffiths, D.F. Schroeter,
+ *Introduction to quantum mechanics*, 3rd edition,
+ Cambridge.