summaryrefslogtreecommitdiff
path: root/content/know/concept/feynman-diagram/index.pdc
diff options
context:
space:
mode:
Diffstat (limited to 'content/know/concept/feynman-diagram/index.pdc')
-rw-r--r--content/know/concept/feynman-diagram/index.pdc10
1 files changed, 5 insertions, 5 deletions
diff --git a/content/know/concept/feynman-diagram/index.pdc b/content/know/concept/feynman-diagram/index.pdc
index 600be61..98ed668 100644
--- a/content/know/concept/feynman-diagram/index.pdc
+++ b/content/know/concept/feynman-diagram/index.pdc
@@ -43,7 +43,7 @@ and $\mathcal{T}\{\}$ denote the
[time-ordered product](/know/concept/time-ordered-product/):
<a href="freegf.png">
-<img src="freegf.png" style="width:60%;display:block;margin:auto;">
+<img src="freegf.png" style="width:60%">
</a>
$$\begin{aligned}
= i \hbar G_{s_2 s_1}^0(\vb{r}_2, t_2; \vb{r}_1, t_1)
@@ -64,7 +64,7 @@ a causal Green's function $G$ for the entire Hamiltonian $\hat{H}$,
where the subscript $H$ refers to the [Heisenberg picture](/know/concept/heisenberg-picture/):
<a href="fullgf.png">
-<img src="fullgf.png" style="width:60%;display:block;margin:auto;">
+<img src="fullgf.png" style="width:60%">
</a>
$$\begin{aligned}
= i \hbar G_{s_2 s_1}(\vb{r}_2, t_2; \vb{r}_1, t_1)
@@ -79,7 +79,7 @@ hence it starts and ends at the same time,
and no arrow is drawn:
<a href="interaction.png">
-<img src="interaction.png" style="width:60%;display:block;margin:auto;">
+<img src="interaction.png" style="width:60%">
</a>
$$\begin{aligned}
= \frac{1}{i \hbar} W_{s_2 s_1}(\vb{r}_2, t_2; \vb{r}_1, t_1)
@@ -102,7 +102,7 @@ One-body (time-dependent) operators $\hat{V}$ in $\hat{H}_1$
are instead represented by a special vertex:
<a href="perturbation.png">
-<img src="perturbation.png" style="width:35%;display:block;margin:auto;">
+<img src="perturbation.png" style="width:35%">
</a>
$$\begin{aligned}
= \frac{1}{i \hbar} V_s(\vb{r}, t)
@@ -179,7 +179,7 @@ Consider the following diagram and the resulting expression,
where $\tilde{\vb{r}} = (\vb{r}, t)$, and $\tilde{\vb{k}} = (\vb{k}, \omega)$:
<a href="conservation.png">
-<img src="conservation.png" style="width:40%;display:block;margin:auto;">
+<img src="conservation.png" style="width:40%">
</a>
$$\begin{aligned}
&= (i \hbar)^3 \sum_{s s'} \!\!\iint \dd{\tilde{\vb{r}}} \dd{\tilde{\vb{r}}'}