diff options
Diffstat (limited to 'content/know/concept/feynman-diagram')
-rw-r--r-- | content/know/concept/feynman-diagram/index.pdc | 10 |
1 files changed, 5 insertions, 5 deletions
diff --git a/content/know/concept/feynman-diagram/index.pdc b/content/know/concept/feynman-diagram/index.pdc index 600be61..98ed668 100644 --- a/content/know/concept/feynman-diagram/index.pdc +++ b/content/know/concept/feynman-diagram/index.pdc @@ -43,7 +43,7 @@ and $\mathcal{T}\{\}$ denote the [time-ordered product](/know/concept/time-ordered-product/): <a href="freegf.png"> -<img src="freegf.png" style="width:60%;display:block;margin:auto;"> +<img src="freegf.png" style="width:60%"> </a> $$\begin{aligned} = i \hbar G_{s_2 s_1}^0(\vb{r}_2, t_2; \vb{r}_1, t_1) @@ -64,7 +64,7 @@ a causal Green's function $G$ for the entire Hamiltonian $\hat{H}$, where the subscript $H$ refers to the [Heisenberg picture](/know/concept/heisenberg-picture/): <a href="fullgf.png"> -<img src="fullgf.png" style="width:60%;display:block;margin:auto;"> +<img src="fullgf.png" style="width:60%"> </a> $$\begin{aligned} = i \hbar G_{s_2 s_1}(\vb{r}_2, t_2; \vb{r}_1, t_1) @@ -79,7 +79,7 @@ hence it starts and ends at the same time, and no arrow is drawn: <a href="interaction.png"> -<img src="interaction.png" style="width:60%;display:block;margin:auto;"> +<img src="interaction.png" style="width:60%"> </a> $$\begin{aligned} = \frac{1}{i \hbar} W_{s_2 s_1}(\vb{r}_2, t_2; \vb{r}_1, t_1) @@ -102,7 +102,7 @@ One-body (time-dependent) operators $\hat{V}$ in $\hat{H}_1$ are instead represented by a special vertex: <a href="perturbation.png"> -<img src="perturbation.png" style="width:35%;display:block;margin:auto;"> +<img src="perturbation.png" style="width:35%"> </a> $$\begin{aligned} = \frac{1}{i \hbar} V_s(\vb{r}, t) @@ -179,7 +179,7 @@ Consider the following diagram and the resulting expression, where $\tilde{\vb{r}} = (\vb{r}, t)$, and $\tilde{\vb{k}} = (\vb{k}, \omega)$: <a href="conservation.png"> -<img src="conservation.png" style="width:40%;display:block;margin:auto;"> +<img src="conservation.png" style="width:40%"> </a> $$\begin{aligned} &= (i \hbar)^3 \sum_{s s'} \!\!\iint \dd{\tilde{\vb{r}}} \dd{\tilde{\vb{r}}'} |