summaryrefslogtreecommitdiff
path: root/content/know/concept/rabi-oscillation/index.pdc
diff options
context:
space:
mode:
Diffstat (limited to 'content/know/concept/rabi-oscillation/index.pdc')
-rw-r--r--content/know/concept/rabi-oscillation/index.pdc24
1 files changed, 15 insertions, 9 deletions
diff --git a/content/know/concept/rabi-oscillation/index.pdc b/content/know/concept/rabi-oscillation/index.pdc
index cf393a4..a488de0 100644
--- a/content/know/concept/rabi-oscillation/index.pdc
+++ b/content/know/concept/rabi-oscillation/index.pdc
@@ -87,11 +87,15 @@ while $\exp\!(i (\omega \!-\! \omega_0) t)$ does not.
Dropping the respective terms thus leaves us with:
$$\begin{aligned}
- \dv{c_a}{t}
- = - i \frac{V_{ab}}{2 \hbar} \exp\!\big(i (\omega \!-\! \omega_0) t \big) \: c_b
- \qquad \quad
- \dv{c_b}{t}
- = - i \frac{V_{ba}}{2 \hbar} \exp\!\big(\!-\! i (\omega \!-\! \omega_0) t \big) \: c_a
+ \boxed{
+ \begin{aligned}
+ \dv{c_a}{t}
+ &= - i \frac{V_{ab}}{2 \hbar} \exp\!\big(i (\omega \!-\! \omega_0) t \big) \: c_b
+ \\
+ \dv{c_b}{t}
+ &= - i \frac{V_{ba}}{2 \hbar} \exp\!\big(\!-\! i (\omega \!-\! \omega_0) t \big) \: c_a
+ \end{aligned}
+ }
\end{aligned}$$
Now we can solve this system of coupled equations exactly.
@@ -186,7 +190,7 @@ the special case of exact resonance $\omega = \omega_0$:
$$\begin{aligned}
\Omega
- \equiv \frac{V_{ab}}{\hbar}
+ \equiv \frac{V_{ba}}{\hbar}
\end{aligned}$$
As an example, Rabi oscillation arises
@@ -195,7 +199,7 @@ where $\hat{H}_1$ is:
$$\begin{aligned}
\hat{H}_1(t)
- = - q \vec{r} \cdot \vec{E}_0 \cos(\omega t)
+ = - q \vec{r} \cdot \vec{E}_0 \cos\!(\omega t)
\end{aligned}$$
After making the rotating wave approximation,
@@ -203,12 +207,14 @@ the resulting Rabi frequency is given by:
$$\begin{aligned}
\Omega
- = \frac{\vec{d} \cdot \vec{E}_0}{\hbar}
+ = - \frac{\vec{d} \cdot \vec{E}_0}{\hbar}
\end{aligned}$$
Where $\vec{E}_0$ is the [electric field](/know/concept/electric-field/) amplitude,
-and $\vec{d} \equiv q \matrixel{a}{\vec{r}}{b}$ is the transition dipole moment
+and $\vec{d} \equiv q \matrixel{b}{\vec{r}}{a}$ is the transition dipole moment
of the electron between orbitals $\ket{a}$ and $\ket{b}$.
+Apparently, some authors define $\vec{d}$ with the opposite sign,
+thereby departing from its classical interpretation.