1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
|
---
title: "Calculus of variations"
firstLetter: "C"
publishDate: 2021-02-24
categories:
- Mathematics
- Physics
date: 2021-02-24T18:50:06+01:00
draft: false
markup: pandoc
---
# Calculus of variations
The **calculus of variations** lays the mathematical groundwork
for [Lagrangian mechanics](/know/concept/lagrangian-mechanics/).
Consider a **functional** $J$, mapping a function $f(x)$ to a scalar value
by integrating over the so-called **Lagrangian** $L$,
which represents an expression involving $x$, $f$ and the derivative $f'$:
$$\begin{aligned}
J[f] = \int_{x_0}^{x_1} L(f, f', x) \dd{x}
\end{aligned}$$
If $J$ in some way measures the physical "cost" (e.g. energy) of
the path $f(x)$ taken by a physical system,
the **principle of least action** states that $f$ will be a minimum of $J[f]$,
so for example the expended energy will be minimized.
In practice, various cost metrics may be used,
so maxima of $J[f]$ are also interesting to us.
If $f(x, \varepsilon\!=\!0)$ is the optimal route, then a slightly
different (and therefore worse) path between the same two points can be expressed
using the parameter $\varepsilon$:
$$\begin{aligned}
f(x, \varepsilon) = f(x, 0) + \varepsilon \eta(x)
\qquad \mathrm{or} \qquad
\delta f = \varepsilon \eta(x)
\end{aligned}$$
Where $\eta(x)$ is an arbitrary differentiable deviation.
Since $f(x, \varepsilon)$ must start and end in the same points as $f(x,0)$,
we have the boundary conditions:
$$\begin{aligned}
\eta(x_0) = \eta(x_1) = 0
\end{aligned}$$
Given $L$, the goal is to find an equation for the optimal path $f(x,0)$.
Just like when finding the minimum of a real function,
the minimum $f$ of a functional $J[f]$ is a stationary point
with respect to the deviation weight $\varepsilon$,
a condition often written as $\delta J = 0$.
In the following, the integration limits have been omitted:
$$\begin{aligned}
0
&= \delta J
= \pdv{J}{\varepsilon} \Big|_{\varepsilon = 0}
= \int \pdv{L}{\varepsilon} \dd{x}
= \int \pdv{L}{f} \pdv{f}{\varepsilon} + \pdv{L}{f'} \pdv{f'}{\varepsilon} \dd{x}
\\
&= \int \pdv{L}{f} \eta + \pdv{L}{f'} \eta' \dd{x}
= \Big[ \pdv{L}{f'} \eta \Big]_{x_0}^{x_1} + \int \pdv{L}{f} \eta - \frac{d}{dx} \Big( \pdv{L}{f'} \Big) \eta \dd{x}
\end{aligned}$$
The boundary term from partial integration vanishes due to the boundary
conditions for $\eta(x)$. We are thus left with:
$$\begin{aligned}
0
= \int \eta \bigg( \pdv{L}{f} - \dv{x} \Big( \pdv{L}{f'} \Big) \bigg) \dd{x}
\end{aligned}$$
This holds for all $\eta$, but $\eta$ is arbitrary, so in fact
only the parenthesized expression matters:
$$\begin{aligned}
\boxed{
0 = \pdv{L}{f} - \dv{x} \Big( \pdv{L}{f'} \Big)
}
\end{aligned}$$
This is known as the **Euler-Lagrange equation** of the Lagrangian $L$,
and its solutions represent the optimal paths $f(x, 0)$.
## Multiple functions
Suppose that the Lagrangian $L$ depends on multiple independent functions
$f_1, f_2, ..., f_N$:
$$\begin{aligned}
J[f_1, ..., f_N] = \int_{x_0}^{x_1} L(f_1, ..., f_N, f_1', ..., f_N', x) \dd{x}
\end{aligned}$$
In this case, every $f_n(x)$ has its own deviation $\eta_n(x)$,
satisfying $\eta_n(x_0) = \eta_n(x_1) = 0$:
$$\begin{aligned}
f_n(x, \varepsilon) = f_n(x, 0) + \varepsilon \eta_n(x)
\end{aligned}$$
The derivation procedure is identical to the case $N = 1$ from earlier:
$$\begin{aligned}
0
&= \pdv{J}{\varepsilon} \Big|_{\varepsilon = 0}
= \int \pdv{L}{\varepsilon} \dd{x}
= \int \sum_{n} \Big( \pdv{L}{f_n} \pdv{f_n}{\varepsilon} + \pdv{L}{f_n'} \pdv{f_n'}{\varepsilon} \Big) \dd{x}
\\
&= \int \sum_{n} \Big( \pdv{L}{f_n} \eta_n + \pdv{L}{f_n'} \eta_n' \Big) \dd{x}
\\
&= \Big[ \sum_{n} \pdv{L}{f_n'} \eta_n \Big]_{x_0}^{x_1}
+ \int \sum_{n} \eta_n \bigg( \pdv{L}{f_n} - \frac{d}{dx} \Big( \pdv{L}{f_n'} \Big) \bigg) \dd{x}
\end{aligned}$$
Once again, $\eta_n(x)$ is arbitrary and disappears at the boundaries,
so we end up with $N$ equations of the same form as for a single function:
$$\begin{aligned}
\boxed{
0 = \pdv{L}{f_1} - \dv{x} \Big( \pdv{L}{f_1'} \Big)
\quad \cdots \quad
0 = \pdv{L}{f_N} - \dv{x} \Big( \pdv{L}{f_N'} \Big)
}
\end{aligned}$$
## Higher-order derivatives
Suppose that the Lagrangian $L$ depends on multiple derivatives of $f(x)$:
$$\begin{aligned}
J[f] = \int_{x_0}^{x_1} L(f, f', f'', ..., f^{(N)}, x) \dd{x}
\end{aligned}$$
Once again, the derivation procedure is the same as before:
$$\begin{aligned}
0
&= \pdv{J}{\varepsilon} \Big|_{\varepsilon = 0}
= \int \pdv{L}{\varepsilon} \dd{x}
= \int \pdv{L}{f} \pdv{f}{\varepsilon} + \sum_{n} \pdv{L}{f^{(n)}} \pdv{f^{(n)}}{\varepsilon} \dd{x}
\\
&= \int \pdv{L}{f} \eta + \sum_{n} \pdv{L}{f^{(n)}} \eta^{(n)} \dd{x}
\end{aligned}$$
The goal is to turn each $\eta^{(n)}(x)$ into $\eta(x)$, so we need to
partially integrate the $n$th term of the sum $n$ times. In this case,
we will need some additional boundary conditions for $\eta(x)$:
$$\begin{aligned}
\eta'(x_0) = \eta'(x_1) = 0
\qquad \cdots \qquad
\eta^{(N-1)}(x_0) = \eta^{(N-1)}(x_1) = 0
\end{aligned}$$
This eliminates the boundary terms from partial integration, leaving:
$$\begin{aligned}
0
&= \int \eta \bigg( \pdv{L}{f} + \sum_{n} (-1)^n \dv[n]{x} \Big( \pdv{L}{f^{(n)}} \Big) \bigg) \dd{x}
\end{aligned}$$
Once again, because $\eta(x)$ is arbitrary, the Euler-Lagrange equation becomes:
$$\begin{aligned}
\boxed{
0 = \pdv{L}{f} + \sum_{n} (-1)^n \dv[n]{x} \Big( \pdv{L}{f^{(n)}} \Big)
}
\end{aligned}$$
## Multiple coordinates
Suppose now that $f$ is a function of multiple variables.
For brevity, we only consider two variables $x$ and $y$,
but the results generalize effortlessly to larger amounts.
The Lagrangian now depends on all the partial derivatives of $f(x, y)$:
$$\begin{aligned}
J[f] = \iint_{(x_0, y_0)}^{(x_1, y_1)} L(f, f_x, f_y, x, y) \dd{x} \dd{y}
\end{aligned}$$
The arbitrary deviation $\eta$ is then also a function of multiple variables:
$$\begin{aligned}
f(x, y; \varepsilon) = f(x, y; 0) + \varepsilon \eta(x, y)
\end{aligned}$$
The derivation procedure starts in the exact same way as before:
$$\begin{aligned}
0
&= \pdv{J}{\varepsilon} \Big|_{\varepsilon = 0}
= \iint \pdv{L}{\varepsilon} \dd{x} \dd{y}
\\
&= \iint \pdv{L}{f} \pdv{f}{\varepsilon} + \pdv{L}{f_x} \pdv{f_x}{\varepsilon} + \pdv{L}{f_y} \pdv{f_y}{\varepsilon} \dd{x} \dd{y}
\\
&= \iint \pdv{L}{f} \eta + \pdv{L}{f_x} \eta_x + \pdv{L}{f_y} \eta_y \dd{x} \dd{y}
\end{aligned}$$
We partially integrate for both $\eta_x$ and $\eta_y$, yielding:
$$\begin{aligned}
0
&= \int \Big[ \pdv{L}{f_x} \eta \Big]_{x_0}^{x_1} \dd{y} + \int \Big[ \pdv{L}{f_y} \eta \Big]_{y_0}^{y_1} \dd{x}
\\
&\quad + \iint \eta \bigg( \pdv{L}{f} - \dv{x} \Big( \pdv{L}{f_x} \Big) - \dv{y} \Big( \pdv{L}{f_y} \Big) \bigg) \dd{x} \dd{y}
\end{aligned}$$
But now, to eliminate these boundary terms, we need extra conditions for $\eta$:
$$\begin{aligned}
\forall y: \eta(x_0, y) = \eta(x_1, y) = 0
\qquad
\forall x: \eta(x, y_0) = \eta(x, y_1) = 0
\end{aligned}$$
In other words, the deviation $\eta$ must be zero on the whole "box".
Again relying on the fact that $\eta$ is arbitrary, the Euler-Lagrange
equation is:
$$\begin{aligned}
0 = \pdv{L}{f} - \dv{x} \Big( \pdv{L}{f_x} \Big) - \dv{y} \Big( \pdv{L}{f_y} \Big)
\end{aligned}$$
This generalizes nicely to functions of even more variables $x_1, x_2, ..., x_N$:
$$\begin{aligned}
\boxed{
0 = \pdv{L}{f} - \sum_{n} \dv{x_n} \Big( \pdv{L}{f_{x_n}} \Big)
}
\end{aligned}$$
## Constraints
So far, for multiple functions $f_1, ..., f_N$,
we have been assuming that all $f_n$ are independent, and by extension all $\eta_n$.
Suppose that we now have $M < N$ constraints $\phi_m$
that all $f_n$ need to obey, introducing implicit dependencies between them.
Let us consider constraints $\phi_m$ of the two forms below.
It is important that they are **holonomic**,
meaning they do not depend on any derivatives of any $f_n(x)$:
$$\begin{aligned}
\phi_m(f_1, ..., f_N, x) = 0
\qquad \qquad
\int_{x_0}^{x_1} \phi_m(f_1, ..., f_N, x) \dd{x} = C_m
\end{aligned}$$
Where $C_m$ is a constant.
Note that the first form can also be used for $\phi_m = C_m \neq 0$,
by simply redefining the constraint as $\phi_m^0 = \phi_m - C_m = 0$.
To solve this constrained optimization problem for $f_n(x)$,
we introduce [Lagrange multipliers](/know/concept/lagrange-multiplier/) $\lambda_m$.
In the former case $\lambda_m(x)$ is a function of $x$, while in the
latter case $\lambda_m$ is constant:
$$\begin{aligned}
\int \lambda_m(x) \: \phi_m(\{f_n\}, x) \dd{x} = 0
\qquad \qquad
\lambda_m \int \phi_m(\{f_n\}, x) \dd{x} = \lambda_m C_m
\end{aligned}$$
The reason for this distinction in $\lambda_m$
is that we need to find the stationary points with respect to $\varepsilon$
of both constraint types. Written in the variational form, this is:
$$\begin{aligned}
\delta \int \lambda_m \: \phi_m \dd{x} = 0
\end{aligned}$$
From this, we define a new Lagrangian $\Lambda$ for the functional $J$,
with the contraints built in:
$$\begin{aligned}
J[f_n]
&= \int \Lambda(f_1, ..., f_N; f_1', ..., f_N'; \lambda_1, ..., \lambda_M; x) \dd{x}
\\
&= \int L + \sum_{m} \lambda_m \phi_m \dd{x}
\end{aligned}$$
Then we derive the Euler-Lagrange equation as usual for $\Lambda$ instead of $L$:
$$\begin{aligned}
0
&= \delta \int \Lambda \dd{x}
= \int \pdv{\Lambda}{\varepsilon} \dd{x}
= \int \sum_n \Big( \pdv{\Lambda}{f_n} \pdv{f_n}{\varepsilon} + \pdv{\Lambda}{f_n'} \pdv{f_n'}{\varepsilon} \Big) \dd{x}
\\
&= \int \sum_n \Big( \pdv{\Lambda}{f_n} \eta_n + \pdv{\Lambda}{f_n'} \eta_n' \Big) \dd{x}
\\
&= \Big[ \sum_n \pdv{\Lambda}{f_n'} \eta_n \Big]_{x_0}^{x_1}
+ \int \sum_n \eta_n \bigg( \pdv{\Lambda}{f_n} - \dv{x} \Big( \pdv{\Lambda}{f_n'} \Big) \bigg) \dd{x}
\end{aligned}$$
Using the same logic as before, we end up with a set of Euler-Lagrange equations with $\Lambda$:
$$\begin{aligned}
0
= \pdv{\Lambda}{f_n} - \dv{x} \Big( \pdv{\Lambda}{f_n'} \Big)
\end{aligned}$$
By inserting the definition of $\Lambda$, we then get the following.
Recall that $\phi_m$ is holonomic, and thus independent of all derivatives $f_n'$:
$$\begin{aligned}
\boxed{
0
= \pdv{L}{f_n} - \dv{x} \Big( \pdv{L}{f_n'} \Big) + \sum_{m} \lambda_m \pdv{\phi_m}{f_n}
}
\end{aligned}$$
These are **Lagrange's equations of the first kind**,
with their second-kind counterparts being the earlier Euler-Lagrange equations.
Note that there are $N$ separate equations, one for each $f_n$.
Due to the constraints $\phi_m$, the functions $f_n$ are not independent.
This is solved by choosing $\lambda_m$ such that $M$ of the $N$ equations hold,
i.e. solving a system of $M$ equations for $\lambda_m$:
$$\begin{aligned}
\dv{x} \Big( \pdv{L}{f_n'} \Big) - \pdv{L}{f_n}
= \sum_{m} \lambda_m \pdv{\phi_m}{f_n}
\end{aligned}$$
And then the remaining $N - M$ equations can be solved in the normal unconstrained way.
## References
1. G.B. Arfken, H.J. Weber,
*Mathematical methods for physicists*, 6th edition, 2005,
Elsevier.
2. O. Bang,
*Applied mathematics for physicists: lecture notes*, 2019,
unpublished.
|