diff options
author | Prefetch | 2023-01-03 19:48:17 +0100 |
---|---|---|
committer | Prefetch | 2023-01-03 19:48:27 +0100 |
commit | aeacfca5aea5df7c107cf0c12e72ab5d496c96e1 (patch) | |
tree | 6d89742cdf29fe0ad46590586858396a4c560fca /source/know/concept/hellmann-feynman-theorem | |
parent | b1a9b1b9b2f04efd6dc39bd2a02c544d34d1259c (diff) |
More improvements to knowledge base
Diffstat (limited to 'source/know/concept/hellmann-feynman-theorem')
-rw-r--r-- | source/know/concept/hellmann-feynman-theorem/index.md | 31 |
1 files changed, 15 insertions, 16 deletions
diff --git a/source/know/concept/hellmann-feynman-theorem/index.md b/source/know/concept/hellmann-feynman-theorem/index.md index e18acc2..c6bf720 100644 --- a/source/know/concept/hellmann-feynman-theorem/index.md +++ b/source/know/concept/hellmann-feynman-theorem/index.md @@ -9,20 +9,20 @@ layout: "concept" --- Consider the time-independent Schrödinger equation, -where the Hamiltonian $$\hat{H}$$ depends on a general parameter $$\lambda$$, -whose meaning or type we will not specify: +where the Hamiltonian $$\hat{H}$$ depends on some parameter $$\lambda$$ +whose meaning we will not specify: $$\begin{aligned} - \hat{H}(\lambda) \Ket{\psi_n(\lambda)} - = E_n(\lambda) \Ket{\psi_n(\lambda)} + \hat{H}(\lambda) \ket{\psi_n(\lambda)} + = E_n(\lambda) \ket{\psi_n(\lambda)} \end{aligned}$$ -Assuming all eigenstates $$\Ket{\psi_n}$$ are normalized, +Assuming all eigenstates $$\ket{\psi_n}$$ are normalized, this gives us the following basic relation: $$\begin{aligned} \matrixel{\psi_m}{\hat{H}}{\psi_n} - = E_n \Inprod{\psi_m}{\psi_n} + = E_n \inprod{\psi_m}{\psi_n} = \delta_{mn} E_n \end{aligned}$$ @@ -38,33 +38,32 @@ $$\begin{aligned} + \matrixel{\psi_m}{\nabla_\lambda \hat{H}}{\psi_n} + \matrixel{\psi_m}{\hat{H}}{\nabla_\lambda \psi_n} \\ - &= E_m \Inprod{\psi_m}{\nabla_\lambda \psi_n} + E_n \Inprod{\nabla_\lambda \psi_m}{\psi_n} + \matrixel{\psi_m}{\nabla_\lambda \hat{H}}{\psi_n} + &= E_m \inprod{\psi_m}{\nabla_\lambda \psi_n} + E_n \inprod{\nabla_\lambda \psi_m}{\psi_n} + \matrixel{\psi_m}{\nabla_\lambda \hat{H}}{\psi_n} \end{aligned}$$ In order to simplify this, we differentiate the orthogonality relation -$$\Inprod{\psi_m}{\psi_n} = \delta_{mn}$$, -which ends up telling us that -$$\Inprod{\nabla_\lambda \psi_m}{\psi_n} = - \Inprod{\psi_m}{\nabla_\lambda \psi_n}$$: +$$\inprod{\psi_m}{\psi_n} = \delta_{mn}$$: $$\begin{aligned} 0 = \nabla_\lambda \delta_{mn} - = \nabla_\lambda \Inprod{\psi_m}{\psi_n} - = \Inprod{\nabla_\lambda \psi_m}{\psi_n} + \Inprod{\psi_m}{\nabla_\lambda \psi_n} + = \nabla_\lambda \inprod{\psi_m}{\psi_n} + = \inprod{\nabla_\lambda \psi_m}{\psi_n} + \inprod{\psi_m}{\nabla_\lambda \psi_n} \end{aligned}$$ -Using this result to replace $$\Inprod{\nabla_\lambda \psi_m}{\psi_n}$$ +Meaning that $$\inprod{\nabla_\lambda \psi_m}{\psi_n} = - \inprod{\psi_m}{\nabla_\lambda \psi_n}$$. +Using this result to replace $$\inprod{\nabla_\lambda \psi_m}{\psi_n}$$ in the previous equation leads to: $$\begin{aligned} \delta_{mn} \nabla_\lambda E_n - &= (E_m - E_n) \Inprod{\psi_m}{\nabla_\lambda \psi_n} + \matrixel{\psi_m}{\nabla_\lambda \hat{H}}{\psi_n} + &= (E_m - E_n) \inprod{\psi_m}{\nabla_\lambda \psi_n} + \matrixel{\psi_m}{\nabla_\lambda \hat{H}}{\psi_n} \end{aligned}$$ For $$m = n$$, we therefore arrive at the **Hellmann-Feynman theorem**, which is useful when doing numerical calculations -to minimize energies with respect to $$\lambda$$: +that often involve minimizing energies with respect to $$\lambda$$: $$\begin{aligned} \boxed{ @@ -79,7 +78,7 @@ the [Berry phase](/know/concept/berry-phase/): $$\begin{aligned} \boxed{ - (E_n - E_m) \Inprod{\psi_m}{\nabla_\lambda \psi_n} + (E_n - E_m) \inprod{\psi_m}{\nabla_\lambda \psi_n} = \matrixel{\psi_m}{\nabla_\lambda \hat{H}}{\psi_n} } \end{aligned}$$ |