summaryrefslogtreecommitdiff
path: root/source/know/concept/spherical-coordinates
diff options
context:
space:
mode:
authorPrefetch2022-10-20 18:25:31 +0200
committerPrefetch2022-10-20 18:25:31 +0200
commit16555851b6514a736c5c9d8e73de7da7fc9b6288 (patch)
tree76b8bfd30f8941d0d85365990bcdbc5d0643cabc /source/know/concept/spherical-coordinates
parente5b9bce79b68a68ddd2e51daa16d2fea73b84fdb (diff)
Migrate from 'jekyll-katex' to 'kramdown-math-sskatex'
Diffstat (limited to 'source/know/concept/spherical-coordinates')
-rw-r--r--source/know/concept/spherical-coordinates/index.md34
1 files changed, 17 insertions, 17 deletions
diff --git a/source/know/concept/spherical-coordinates/index.md b/source/know/concept/spherical-coordinates/index.md
index bc01c95..9df5d51 100644
--- a/source/know/concept/spherical-coordinates/index.md
+++ b/source/know/concept/spherical-coordinates/index.md
@@ -10,16 +10,16 @@ layout: "concept"
**Spherical coordinates** are an extension of polar coordinates to 3D.
The position of a given point in space is described by
-three coordinates $(r, \theta, \varphi)$, defined as:
+three coordinates $$(r, \theta, \varphi)$$, defined as:
-* $r$: the **radius** or **radial distance**: distance to the origin.
-* $\theta$: the **elevation**, **polar angle** or **colatitude**:
- angle to the positive $z$-axis, or **zenith**, i.e. the "north pole".
-* $\varphi$: the **azimuth**, **azimuthal angle** or **longitude**:
- angle from the positive $x$-axis, typically in the counter-clockwise sense.
+* $$r$$: the **radius** or **radial distance**: distance to the origin.
+* $$\theta$$: the **elevation**, **polar angle** or **colatitude**:
+ angle to the positive $$z$$-axis, or **zenith**, i.e. the "north pole".
+* $$\varphi$$: the **azimuth**, **azimuthal angle** or **longitude**:
+ angle from the positive $$x$$-axis, typically in the counter-clockwise sense.
-Cartesian coordinates $(x, y, z)$ and the spherical system
-$(r, \theta, \varphi)$ are related by:
+Cartesian coordinates $$(x, y, z)$$ and the spherical system
+$$(r, \theta, \varphi)$$ are related by:
$$\begin{aligned}
\boxed{
@@ -31,8 +31,8 @@ $$\begin{aligned}
}
\end{aligned}$$
-Conversely, a point given in $(x, y, z)$
-can be converted to $(r, \theta, \varphi)$
+Conversely, a point given in $$(x, y, z)$$
+can be converted to $$(r, \theta, \varphi)$$
using these formulae:
$$\begin{aligned}
@@ -47,7 +47,7 @@ $$\begin{aligned}
The spherical coordinate system is an orthogonal
[curvilinear system](/know/concept/curvilinear-coordinates/),
-whose scale factors $h_r$, $h_\theta$ and $h_\varphi$ we want to find.
+whose scale factors $$h_r$$, $$h_\theta$$ and $$h_\varphi$$ we want to find.
To do so, we calculate the differentials of the Cartesian coordinates:
$$\begin{aligned}
@@ -58,7 +58,7 @@ $$\begin{aligned}
\dd{z} &= \dd{r} \cos\theta - \dd{\theta} r \sin\theta
\end{aligned}$$
-And then we calculate the line element $\dd{\ell}^2$,
+And then we calculate the line element $$\dd{\ell}^2$$,
skipping many terms thanks to orthogonality:
$$\begin{aligned}
@@ -74,7 +74,7 @@ $$\begin{aligned}
Finally, we can simply read off
the squares of the desired scale factors
-$h_r^2$, $h_\theta^2$ and $h_\varphi^2$:
+$$h_r^2$$, $$h_\theta^2$$ and $$h_\varphi^2$$:
$$\begin{aligned}
\boxed{
@@ -146,7 +146,7 @@ $$\begin{aligned}
}
\end{aligned}$$
-The differential element of volume $\dd{V}$
+The differential element of volume $$\dd{V}$$
takes the following form:
$$\begin{aligned}
@@ -163,7 +163,7 @@ $$\begin{aligned}
= \int_0^{2\pi} \int_0^\pi \int_0^\infty f(r, \theta, \varphi) \: r^2 \sin\theta \dd{r} \dd{\theta} \dd{\varphi}
\end{aligned}$$
-The isosurface elements are as follows, where $S_r$ is a surface at constant $r$, etc.:
+The isosurface elements are as follows, where $$S_r$$ is a surface at constant $$r$$, etc.:
$$\begin{aligned}
\boxed{
@@ -177,7 +177,7 @@ $$\begin{aligned}
}
\end{aligned}$$
-Similarly, the normal vector element $\dd{\vu{S}}$ for an arbitrary surface is given by:
+Similarly, the normal vector element $$\dd{\vu{S}}$$ for an arbitrary surface is given by:
$$\begin{aligned}
\boxed{
@@ -188,7 +188,7 @@ $$\begin{aligned}
}
\end{aligned}$$
-And finally, the tangent vector element $\dd{\vu{\ell}}$ of a given curve is as follows:
+And finally, the tangent vector element $$\dd{\vu{\ell}}$$ of a given curve is as follows:
$$\begin{aligned}
\boxed{