diff options
Diffstat (limited to 'source/know/concept/spherical-coordinates')
| -rw-r--r-- | source/know/concept/spherical-coordinates/index.md | 34 | 
1 files changed, 17 insertions, 17 deletions
diff --git a/source/know/concept/spherical-coordinates/index.md b/source/know/concept/spherical-coordinates/index.md index bc01c95..9df5d51 100644 --- a/source/know/concept/spherical-coordinates/index.md +++ b/source/know/concept/spherical-coordinates/index.md @@ -10,16 +10,16 @@ layout: "concept"  **Spherical coordinates** are an extension of polar coordinates to 3D.  The position of a given point in space is described by -three coordinates $(r, \theta, \varphi)$, defined as: +three coordinates $$(r, \theta, \varphi)$$, defined as: -*   $r$: the **radius** or **radial distance**: distance to the origin. -*   $\theta$: the **elevation**, **polar angle** or **colatitude**: -    angle to the positive $z$-axis, or **zenith**, i.e. the "north pole". -*   $\varphi$: the **azimuth**, **azimuthal angle** or **longitude**: -    angle from the positive $x$-axis, typically in the counter-clockwise sense. +*   $$r$$: the **radius** or **radial distance**: distance to the origin. +*   $$\theta$$: the **elevation**, **polar angle** or **colatitude**: +    angle to the positive $$z$$-axis, or **zenith**, i.e. the "north pole". +*   $$\varphi$$: the **azimuth**, **azimuthal angle** or **longitude**: +    angle from the positive $$x$$-axis, typically in the counter-clockwise sense. -Cartesian coordinates $(x, y, z)$ and the spherical system -$(r, \theta, \varphi)$ are related by: +Cartesian coordinates $$(x, y, z)$$ and the spherical system +$$(r, \theta, \varphi)$$ are related by:  $$\begin{aligned}      \boxed{ @@ -31,8 +31,8 @@ $$\begin{aligned}      }  \end{aligned}$$ -Conversely, a point given in $(x, y, z)$ -can be converted to $(r, \theta, \varphi)$ +Conversely, a point given in $$(x, y, z)$$ +can be converted to $$(r, \theta, \varphi)$$  using these formulae:  $$\begin{aligned} @@ -47,7 +47,7 @@ $$\begin{aligned}  The spherical coordinate system is an orthogonal  [curvilinear system](/know/concept/curvilinear-coordinates/), -whose scale factors $h_r$, $h_\theta$ and $h_\varphi$ we want to find. +whose scale factors $$h_r$$, $$h_\theta$$ and $$h_\varphi$$ we want to find.  To do so, we calculate the differentials of the Cartesian coordinates:  $$\begin{aligned} @@ -58,7 +58,7 @@ $$\begin{aligned}      \dd{z} &= \dd{r} \cos\theta - \dd{\theta} r \sin\theta  \end{aligned}$$ -And then we calculate the line element $\dd{\ell}^2$, +And then we calculate the line element $$\dd{\ell}^2$$,  skipping many terms thanks to orthogonality:  $$\begin{aligned} @@ -74,7 +74,7 @@ $$\begin{aligned}  Finally, we can simply read off  the squares of the desired scale factors -$h_r^2$, $h_\theta^2$ and $h_\varphi^2$: +$$h_r^2$$, $$h_\theta^2$$ and $$h_\varphi^2$$:  $$\begin{aligned}      \boxed{ @@ -146,7 +146,7 @@ $$\begin{aligned}      }  \end{aligned}$$ -The differential element of volume $\dd{V}$ +The differential element of volume $$\dd{V}$$  takes the following form:  $$\begin{aligned} @@ -163,7 +163,7 @@ $$\begin{aligned}      = \int_0^{2\pi} \int_0^\pi \int_0^\infty f(r, \theta, \varphi) \: r^2 \sin\theta \dd{r} \dd{\theta} \dd{\varphi}  \end{aligned}$$ -The isosurface elements are as follows, where $S_r$ is a surface at constant $r$, etc.: +The isosurface elements are as follows, where $$S_r$$ is a surface at constant $$r$$, etc.:  $$\begin{aligned}      \boxed{ @@ -177,7 +177,7 @@ $$\begin{aligned}      }  \end{aligned}$$ -Similarly, the normal vector element $\dd{\vu{S}}$ for an arbitrary surface is given by: +Similarly, the normal vector element $$\dd{\vu{S}}$$ for an arbitrary surface is given by:  $$\begin{aligned}      \boxed{ @@ -188,7 +188,7 @@ $$\begin{aligned}      }  \end{aligned}$$ -And finally, the tangent vector element $\dd{\vu{\ell}}$ of a given curve is as follows: +And finally, the tangent vector element $$\dd{\vu{\ell}}$$ of a given curve is as follows:  $$\begin{aligned}      \boxed{  | 
