summaryrefslogtreecommitdiff
path: root/source/know/concept/bose-einstein-distribution/index.md
diff options
context:
space:
mode:
Diffstat (limited to 'source/know/concept/bose-einstein-distribution/index.md')
-rw-r--r--source/know/concept/bose-einstein-distribution/index.md77
1 files changed, 77 insertions, 0 deletions
diff --git a/source/know/concept/bose-einstein-distribution/index.md b/source/know/concept/bose-einstein-distribution/index.md
new file mode 100644
index 0000000..8397a8f
--- /dev/null
+++ b/source/know/concept/bose-einstein-distribution/index.md
@@ -0,0 +1,77 @@
+---
+title: "Bose-Einstein distribution"
+date: 2021-07-11
+categories:
+- Physics
+- Statistics
+- Quantum mechanics
+layout: "concept"
+---
+
+**Bose-Einstein statistics** describe how bosons,
+which do not obey the [Pauli exclusion principle](/know/concept/pauli-exclusion-principle/),
+will distribute themselves across the available states
+in a system at equilibrium.
+
+Consider a single-particle state $s$,
+which can contain any number of bosons.
+Since the occupation number $N$ is variable,
+we turn to the [grand canonical ensemble](/know/concept/grand-canonical-ensemble/),
+whose grand partition function $\mathcal{Z}$ is as follows,
+where $\varepsilon$ is the energy per particle,
+and $\mu$ is the chemical potential:
+
+$$\begin{aligned}
+ \mathcal{Z}
+ = \sum_{N = 0}^\infty \Big( \exp(- \beta (\varepsilon - \mu)) \Big)^{N}
+ = \frac{1}{1 - \exp(- \beta (\varepsilon - \mu))}
+\end{aligned}$$
+
+The corresponding [thermodynamic potential](/know/concept/thermodynamic-potential/)
+is the Landau potential $\Omega$, given by:
+
+$$\begin{aligned}
+ \Omega
+ = - k T \ln{\mathcal{Z}}
+ = k T \ln\!\Big( 1 - \exp(- \beta (\varepsilon - \mu)) \Big)
+\end{aligned}$$
+
+The average number of particles $\Expval{N}$
+is found by taking a derivative of $\Omega$:
+
+$$\begin{aligned}
+ \Expval{N}
+ = - \pdv{\Omega}{\mu}
+ = k T \pdv{\ln{\mathcal{Z}}}{\mu}
+ = \frac{\exp(- \beta (\varepsilon - \mu))}{1 - \exp(- \beta (\varepsilon - \mu))}
+\end{aligned}$$
+
+By multitplying both the numerator and the denominator by $\exp(\beta(\varepsilon \!-\! \mu))$,
+we arrive at the standard form of the **Bose-Einstein distribution** $f_B$:
+
+$$\begin{aligned}
+ \boxed{
+ \Expval{N}
+ = f_B(\varepsilon)
+ = \frac{1}{\exp(\beta (\varepsilon - \mu)) - 1}
+ }
+\end{aligned}$$
+
+This tells the expected occupation number $\Expval{N}$ of state $s$,
+given a temperature $T$ and chemical potential $\mu$.
+The corresponding variance $\sigma^2$ of $N$ is found to be:
+
+$$\begin{aligned}
+ \boxed{
+ \sigma^2
+ = k T \pdv{\Expval{N}}{\mu}
+ = \Expval{N} \big(1 + \Expval{N}\big)
+ }
+\end{aligned}$$
+
+
+
+## References
+1. H. Gould, J. Tobochnik,
+ *Statistical and thermal physics*, 2nd edition,
+ Princeton.