summaryrefslogtreecommitdiff
path: root/source/know/concept/bose-einstein-distribution/index.md
blob: 8397a8ff647a29dd15ed34b0468d2861e06f2914 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
title: "Bose-Einstein distribution"
date: 2021-07-11
categories:
- Physics
- Statistics
- Quantum mechanics
layout: "concept"
---

**Bose-Einstein statistics** describe how bosons,
which do not obey the [Pauli exclusion principle](/know/concept/pauli-exclusion-principle/),
will distribute themselves across the available states
in a system at equilibrium.

Consider a single-particle state $s$,
which can contain any number of bosons.
Since the occupation number $N$ is variable,
we turn to the [grand canonical ensemble](/know/concept/grand-canonical-ensemble/),
whose grand partition function $\mathcal{Z}$ is as follows,
where $\varepsilon$ is the energy per particle,
and $\mu$ is the chemical potential:

$$\begin{aligned}
    \mathcal{Z}
    = \sum_{N = 0}^\infty \Big( \exp(- \beta (\varepsilon - \mu)) \Big)^{N}
    = \frac{1}{1 - \exp(- \beta (\varepsilon - \mu))}
\end{aligned}$$

The corresponding [thermodynamic potential](/know/concept/thermodynamic-potential/)
is the Landau potential $\Omega$, given by:

$$\begin{aligned}
    \Omega
    = - k T \ln{\mathcal{Z}}
    = k T \ln\!\Big( 1 - \exp(- \beta (\varepsilon - \mu)) \Big)
\end{aligned}$$

The average number of particles $\Expval{N}$
is found by taking a derivative of $\Omega$:

$$\begin{aligned}
    \Expval{N}
    = - \pdv{\Omega}{\mu}
    = k T \pdv{\ln{\mathcal{Z}}}{\mu}
    = \frac{\exp(- \beta (\varepsilon - \mu))}{1 - \exp(- \beta (\varepsilon - \mu))}
\end{aligned}$$

By multitplying both the numerator and the denominator by $\exp(\beta(\varepsilon \!-\! \mu))$,
we arrive at the standard form of the **Bose-Einstein distribution** $f_B$:

$$\begin{aligned}
    \boxed{
        \Expval{N}
        = f_B(\varepsilon)
        = \frac{1}{\exp(\beta (\varepsilon - \mu)) - 1}
    }
\end{aligned}$$

This tells the expected occupation number $\Expval{N}$ of state $s$,
given a temperature $T$ and chemical potential $\mu$.
The corresponding variance $\sigma^2$ of $N$ is found to be:

$$\begin{aligned}
    \boxed{
        \sigma^2
        = k T \pdv{\Expval{N}}{\mu}
        = \Expval{N} \big(1 + \Expval{N}\big)
    }
\end{aligned}$$



## References
1.  H. Gould, J. Tobochnik,
    *Statistical and thermal physics*, 2nd edition,
    Princeton.