diff options
Diffstat (limited to 'source/know/concept/hellmann-feynman-theorem')
-rw-r--r-- | source/know/concept/hellmann-feynman-theorem/index.md | 91 |
1 files changed, 91 insertions, 0 deletions
diff --git a/source/know/concept/hellmann-feynman-theorem/index.md b/source/know/concept/hellmann-feynman-theorem/index.md new file mode 100644 index 0000000..6b458db --- /dev/null +++ b/source/know/concept/hellmann-feynman-theorem/index.md @@ -0,0 +1,91 @@ +--- +title: "Hellmann-Feynman theorem" +date: 2021-11-29 +categories: +- Physics +- Quantum mechanics +layout: "concept" +--- + +Consider the time-independent Schrödinger equation, +where the Hamiltonian $\hat{H}$ depends on a general parameter $\lambda$, +whose meaning or type we will not specify: + +$$\begin{aligned} + \hat{H}(\lambda) \Ket{\psi_n(\lambda)} + = E_n(\lambda) \Ket{\psi_n(\lambda)} +\end{aligned}$$ + +Assuming all eigenstates $\Ket{\psi_n}$ are normalized, +this gives us the following basic relation: + +$$\begin{aligned} + \matrixel{\psi_m}{\hat{H}}{\psi_n} + = E_n \Inprod{\psi_m}{\psi_n} + = \delta_{mn} E_n +\end{aligned}$$ + +We differentiate this with respect to $\lambda$, +which could be a scalar or a vector. +This yields: + +$$\begin{aligned} + \delta_{mn} \nabla_\lambda E_n + &= \nabla_\lambda \matrixel{\psi_m}{\hat{H}}{\psi_n} + \\ + &= \matrixel{\nabla_\lambda \psi_m}{\hat{H}}{\psi_n} + + \matrixel{\psi_m}{\nabla_\lambda \hat{H}}{\psi_n} + + \matrixel{\psi_m}{\hat{H}}{\nabla_\lambda \psi_n} + \\ + &= E_m \Inprod{\psi_m}{\nabla_\lambda \psi_n} + E_n \Inprod{\nabla_\lambda \psi_m}{\psi_n} + \matrixel{\psi_m}{\nabla_\lambda \hat{H}}{\psi_n} +\end{aligned}$$ + +In order to simplify this, +we differentiate the orthogonality relation +$\Inprod{\psi_m}{\psi_n} = \delta_{mn}$, +which ends up telling us that +$\Inprod{\nabla_\lambda \psi_m}{\psi_n} = - \Inprod{\psi_m}{\nabla_\lambda \psi_n}$: + +$$\begin{aligned} + 0 + = \nabla_\lambda \delta_{mn} + = \nabla_\lambda \Inprod{\psi_m}{\psi_n} + = \Inprod{\nabla_\lambda \psi_m}{\psi_n} + \Inprod{\psi_m}{\nabla_\lambda \psi_n} +\end{aligned}$$ + +Using this result to replace $\Inprod{\nabla_\lambda \psi_m}{\psi_n}$ +in the previous equation leads to: + +$$\begin{aligned} + \delta_{mn} \nabla_\lambda E_n + &= (E_m - E_n) \Inprod{\psi_m}{\nabla_\lambda \psi_n} + \matrixel{\psi_m}{\nabla_\lambda \hat{H}}{\psi_n} +\end{aligned}$$ + +For $m = n$, we therefore arrive at the **Hellmann-Feynman theorem**, +which is useful when doing numerical calculations +to minimize energies with respect to $\lambda$: + +$$\begin{aligned} + \boxed{ + \nabla_\lambda E_n + = \matrixel{\psi_n}{\nabla_\lambda \hat{H}}{\psi_n} + } +\end{aligned}$$ + +While for $m \neq n$, we get the **Epstein generalization** +of the Hellmann-Feynman theorem, which is for example relevant for +the [Berry phase](/know/concept/berry-phase/): + +$$\begin{aligned} + \boxed{ + (E_n - E_m) \Inprod{\psi_m}{\nabla_\lambda \psi_n} + = \matrixel{\psi_m}{\nabla_\lambda \hat{H}}{\psi_n} + } +\end{aligned}$$ + + + +## References +1. G. Grosso, G.P. Parravicini, + *Solid state physics*, + 2nd edition, Elsevier. |