summaryrefslogtreecommitdiff
path: root/source/know
diff options
context:
space:
mode:
Diffstat (limited to 'source/know')
-rw-r--r--source/know/concept/bernstein-vazirani-algorithm/index.md4
-rw-r--r--source/know/concept/canonical-ensemble/index.md2
-rw-r--r--source/know/concept/clausius-mossotti-relation/index.md6
-rw-r--r--source/know/concept/convolution-theorem/index.md8
-rw-r--r--source/know/concept/deutsch-jozsa-algorithm/index.md22
-rw-r--r--source/know/concept/dirac-notation/index.md16
-rw-r--r--source/know/concept/electromagnetic-wave-equation/index.md347
-rw-r--r--source/know/concept/euler-equations/index.md2
-rw-r--r--source/know/concept/fundamental-relation-of-thermodynamics/index.md326
-rw-r--r--source/know/concept/fundamental-solution/index.md34
-rw-r--r--source/know/concept/fundamental-thermodynamic-relation/index.md54
-rw-r--r--source/know/concept/heisenberg-picture/index.md108
-rw-r--r--source/know/concept/interaction-picture/index.md202
-rw-r--r--source/know/concept/ito-integral/index.md57
-rw-r--r--source/know/concept/korteweg-de-vries-equation/index.md31
-rw-r--r--source/know/concept/kramers-kronig-relations/index.md133
-rw-r--r--source/know/concept/lagrange-multiplier/index.md2
-rw-r--r--source/know/concept/laser-rate-equations/index.md10
-rw-r--r--source/know/concept/laws-of-thermodynamics/index.md104
-rw-r--r--source/know/concept/lyddane-sachs-teller-relation/index.md250
-rw-r--r--source/know/concept/magnetohydrodynamics/index.md122
-rw-r--r--source/know/concept/martingale/index.md2
-rw-r--r--source/know/concept/material-derivative/index.md10
-rw-r--r--source/know/concept/maxwell-bloch-equations/index.md22
-rw-r--r--source/know/concept/no-cloning-theorem/index.md8
-rw-r--r--source/know/concept/nonlinear-schrodinger-equation/index.md708
-rw-r--r--source/know/concept/optical-soliton/bright-full.pngbin0 -> 85508 bytes
-rw-r--r--source/know/concept/optical-soliton/bright-half.avifbin0 -> 13232 bytes
-rw-r--r--source/know/concept/optical-soliton/bright-half.jpgbin0 -> 72712 bytes
-rw-r--r--source/know/concept/optical-soliton/bright-half.pngbin0 -> 72999 bytes
-rw-r--r--source/know/concept/optical-soliton/bright-half.webpbin0 -> 31602 bytes
-rw-r--r--source/know/concept/optical-soliton/dark-full.pngbin0 -> 164793 bytes
-rw-r--r--source/know/concept/optical-soliton/dark-half.avifbin0 -> 25523 bytes
-rw-r--r--source/know/concept/optical-soliton/dark-half.jpgbin0 -> 125295 bytes
-rw-r--r--source/know/concept/optical-soliton/dark-half.pngbin0 -> 125292 bytes
-rw-r--r--source/know/concept/optical-soliton/dark-half.webpbin0 -> 57198 bytes
-rw-r--r--source/know/concept/optical-soliton/index.md576
-rw-r--r--source/know/concept/optical-wave-breaking/frequency-full.pngbin66588 -> 0 bytes
-rw-r--r--source/know/concept/optical-wave-breaking/frequency-half.avifbin12506 -> 0 bytes
-rw-r--r--source/know/concept/optical-wave-breaking/frequency-half.jpgbin47933 -> 0 bytes
-rw-r--r--source/know/concept/optical-wave-breaking/frequency-half.pngbin41392 -> 0 bytes
-rw-r--r--source/know/concept/optical-wave-breaking/frequency-half.webpbin26742 -> 0 bytes
-rw-r--r--source/know/concept/optical-wave-breaking/gauss-domegadt-full.pngbin0 -> 89136 bytes
-rw-r--r--source/know/concept/optical-wave-breaking/gauss-domegadt-half.avifbin0 -> 16097 bytes
-rw-r--r--source/know/concept/optical-wave-breaking/gauss-domegadt-half.jpgbin0 -> 73248 bytes
-rw-r--r--source/know/concept/optical-wave-breaking/gauss-domegadt-half.pngbin0 -> 63786 bytes
-rw-r--r--source/know/concept/optical-wave-breaking/gauss-domegadt-half.webpbin0 -> 35022 bytes
-rw-r--r--source/know/concept/optical-wave-breaking/gauss-omega-full.pngbin0 -> 93001 bytes
-rw-r--r--source/know/concept/optical-wave-breaking/gauss-omega-half.avifbin0 -> 15847 bytes
-rw-r--r--source/know/concept/optical-wave-breaking/gauss-omega-half.jpgbin0 -> 67654 bytes
-rw-r--r--source/know/concept/optical-wave-breaking/gauss-omega-half.pngbin0 -> 63868 bytes
-rw-r--r--source/know/concept/optical-wave-breaking/gauss-omega-half.webpbin0 -> 32392 bytes
-rw-r--r--source/know/concept/optical-wave-breaking/index.md548
-rw-r--r--source/know/concept/optical-wave-breaking/sech-omega-full.pngbin0 -> 67230 bytes
-rw-r--r--source/know/concept/optical-wave-breaking/sech-omega-half.avifbin0 -> 10439 bytes
-rw-r--r--source/know/concept/optical-wave-breaking/sech-omega-half.jpgbin0 -> 54589 bytes
-rw-r--r--source/know/concept/optical-wave-breaking/sech-omega-half.pngbin0 -> 48904 bytes
-rw-r--r--source/know/concept/optical-wave-breaking/sech-omega-half.webpbin0 -> 23824 bytes
-rw-r--r--source/know/concept/path-integral-formulation/index.md239
-rw-r--r--source/know/concept/propagator/index.md79
-rw-r--r--source/know/concept/ritz-method/index.md201
-rw-r--r--source/know/concept/rotating-wave-approximation/index.md32
-rw-r--r--source/know/concept/salt-equation/index.md4
-rw-r--r--source/know/concept/self-steepening/index.md241
-rw-r--r--source/know/concept/simons-algorithm/index.md46
-rw-r--r--source/know/concept/thermodynamic-potential/index.md2
-rw-r--r--source/know/concept/time-evolution-operator/index.md184
-rw-r--r--source/know/concept/triple-product-rule/index.md97
-rw-r--r--source/know/concept/two-fluid-equations/index.md47
69 files changed, 3695 insertions, 1191 deletions
diff --git a/source/know/concept/bernstein-vazirani-algorithm/index.md b/source/know/concept/bernstein-vazirani-algorithm/index.md
index 884cca3..4f36d3c 100644
--- a/source/know/concept/bernstein-vazirani-algorithm/index.md
+++ b/source/know/concept/bernstein-vazirani-algorithm/index.md
@@ -24,8 +24,8 @@ of $$x$$ with an unknown $$N$$-bit string $$s$$:
$$\begin{aligned}
f(x)
- = s \cdot x \:\:(\bmod \: 2)
- = (s_1 x_1 + s_2 x_2 + \:...\: + s_N x_N) \:\:(\bmod \: 2)
+ \equiv s \cdot x \:\bmod 2
+ = (s_1 x_1 + s_2 x_2 + \:...\: + s_N x_N) \:\bmod 2
\end{aligned}$$
The goal is to find $$s$$.
diff --git a/source/know/concept/canonical-ensemble/index.md b/source/know/concept/canonical-ensemble/index.md
index 8a96e91..da7d436 100644
--- a/source/know/concept/canonical-ensemble/index.md
+++ b/source/know/concept/canonical-ensemble/index.md
@@ -178,7 +178,7 @@ $$\begin{aligned}
\end{aligned}$$
Rearranging and substituting
-the [fundamental thermodynamic relation](/know/concept/fundamental-thermodynamic-relation/)
+the [fundamental thermodynamic relation](/know/concept/fundamental-relation-of-thermodynamics/)
then gives:
$$\begin{aligned}
diff --git a/source/know/concept/clausius-mossotti-relation/index.md b/source/know/concept/clausius-mossotti-relation/index.md
index a0f4916..03bdcac 100644
--- a/source/know/concept/clausius-mossotti-relation/index.md
+++ b/source/know/concept/clausius-mossotti-relation/index.md
@@ -55,7 +55,8 @@ the dipole term will be dominant in that case, given by:
$$\begin{aligned}
V_i(\vb{r})
- \approx \frac{1}{4 \pi \varepsilon_0} \frac{1}{|\vb{r}|^2} \int \rho_i(\vb{r}') \: |\vb{r}'| \cos{\theta} \dd{\vb{r}'}
+ \approx \frac{1}{4 \pi \varepsilon_0} \frac{1}{|\vb{r}|^2}
+ \int_{-\infty}^\infty \rho_i(\vb{r}') \: |\vb{r}'| \cos{\theta} \dd{\vb{r}'}
\end{aligned}$$
Where $$\theta$$ is the angle between $$\vb{r}$$ and $$\vb{r}'$$,
@@ -64,7 +65,8 @@ with the unit vector $$\vu{r}$$, normalized from $$\vb{r}$$:
$$\begin{aligned}
V_i(\vb{r})
- = \frac{1}{4 \pi \varepsilon_0} \frac{1}{|\vb{r}|^2} \: \vu{r} \cdot \!\!\int \vb{r}' \rho_i(\vb{r}') \dd{\vb{r}'}
+ = \frac{1}{4 \pi \varepsilon_0} \frac{1}{|\vb{r}|^2}
+ \: \vu{r} \cdot \!\!\int_{-\infty}^\infty \vb{r}' \rho_i(\vb{r}') \dd{\vb{r}'}
\end{aligned}$$
The integral is a more general definition of the dipole moment $$\vb{p}_i$$.
diff --git a/source/know/concept/convolution-theorem/index.md b/source/know/concept/convolution-theorem/index.md
index 3f9eafb..8462fcc 100644
--- a/source/know/concept/convolution-theorem/index.md
+++ b/source/know/concept/convolution-theorem/index.md
@@ -24,10 +24,10 @@ and $$A$$ and $$B$$ are the constants from its definition:
$$\begin{aligned}
\boxed{
\begin{aligned}
- A \cdot (f * g)(x)
+ A \: (f * g)(x)
&= \hat{\mathcal{F}}{}^{-1}\Big\{ \tilde{f}(k) \: \tilde{g}(k) \Big\}
\\
- B \cdot (\tilde{f} * \tilde{g})(k)
+ B \: (\tilde{f} * \tilde{g})(k)
&= \hat{\mathcal{F}}\Big\{ f(x) \: g(x) \Big\}
\end{aligned}
}
@@ -45,7 +45,7 @@ $$\begin{aligned}
\\
&= A \int_{-\infty}^\infty g(x') \: f(x - x') \dd{x'}
\\
- &= A \cdot (f * g)(x)
+ &= A \: (f * g)(x)
\end{aligned}$$
Then we do the same again,
@@ -59,7 +59,7 @@ $$\begin{aligned}
\\
&= B \int_{-\infty}^\infty \tilde{g}(k') \: \tilde{f}(k - k') \dd{k'}
\\
- &= B \cdot (\tilde{f} * \tilde{g})(k)
+ &= B \: (\tilde{f} * \tilde{g})(k)
\end{aligned}$$
{% include proof/end.html id="proof-fourier" %}
diff --git a/source/know/concept/deutsch-jozsa-algorithm/index.md b/source/know/concept/deutsch-jozsa-algorithm/index.md
index 44b06ad..223877a 100644
--- a/source/know/concept/deutsch-jozsa-algorithm/index.md
+++ b/source/know/concept/deutsch-jozsa-algorithm/index.md
@@ -72,8 +72,8 @@ $$\begin{aligned}
+ \frac{1}{2} \Ket{1} \Big( \Ket{0 \oplus f(1)} - \Ket{1 \oplus f(1)} \Big)
\end{aligned}$$
-The parenthesized superpositions can be reduced.
-Assuming that $$f(b) = 0$$, we notice:
+The parenthesized superpositions can be reduced:
+let us suppose that $$f(b) = 0$$, then:
$$\begin{aligned}
\Ket{0 \oplus f(b)} - \Ket{1 \oplus f(b)}
@@ -91,7 +91,7 @@ $$\begin{aligned}
\end{aligned}$$
We can thus combine both cases, $$f(b) = 0$$ or $$f(b) = 1$$,
-into the following single expression:
+into the following expression:
$$\begin{aligned}
\Ket{0 \oplus f(b)} - \Ket{1 \oplus f(b)}
@@ -106,8 +106,8 @@ $$\begin{aligned}
\frac{1}{2} \Big( (-1)^{f(0)} \Ket{0} + (-1)^{f(1)} \Ket{1} \Big) \Big( \Ket{0} - \Ket{1} \Big)
\end{aligned}$$
-The second qubit in state $$\Ket{-}$$ is garbage; it is no longer of interest.
-The first qubit is given by:
+The second qubit in state $$\Ket{-}$$ is garbage (i.e. no longer of interest).
+The first qubit is:
$$\begin{aligned}
\frac{1}{\sqrt{2}} \Big( (-1)^{f(0)} \Ket{0} + (-1)^{f(1)} \Ket{1} \Big)
@@ -126,8 +126,8 @@ $$\begin{aligned}
\end{aligned}$$
Depending on whether $$f$$ is constant or balanced,
-the mearurement outcome of this state will be $$\Ket{0}$$ or $$\Ket{1}$$
-with 100\% probability. We have solved the problem!
+the measurement outcome of this state will be $$\Ket{0}$$ or $$\Ket{1}$$
+with 100% probability. We have solved the problem!
Note that we only consulted the oracle (i.e. applied $$U_f$$) once.
A classical computer would need to query it twice,
@@ -146,7 +146,7 @@ This algorithm is then implemented by the following quantum circuit:
alt="Deutsch-Jozsa circuit" %}
There are $$N$$ qubits in initial state $$\Ket{0}$$, and one in $$\Ket{1}$$.
-For clarity, the oracle $$U_f$$ works like so:
+The oracle $$U_f$$ performs this action:
$$\begin{aligned}
\Ket{x_1} \Ket{x_2} \cdots \Ket{x_N} \Ket{y}
@@ -167,7 +167,7 @@ $$\begin{aligned}
Where $$\Ket{x} = \Ket{x_1} \cdots \Ket{x_N}$$ denotes a classical binary state.
For example, if $$x = 5 = 2^0 + 2^2$$ in the summation,
then $$\Ket{x} = \Ket{1} \Ket{0} \Ket{1} \Ket{0}^{\otimes N-3}$$
-(from least to most significant).
+(from least to most significant digit).
We give this state to the oracle,
and, by the same logic as for the Deutsch algorithm,
@@ -217,8 +217,8 @@ we only need to measure the $$N$$ qubits once;
$$f$$ is constant if and only if all are zero.
The Deutsch-Jozsa algorithm needs only one oracle query to give an error-free result,
-whereas a classical computer needs $$2^{N-1} + 1$$ queries in the worst case;
-a revolutionary discovery.
+whereas a classical computer needs $$2^{N-1} + 1$$ queries in the worst case.
+A revolutionary discovery!
## References
diff --git a/source/know/concept/dirac-notation/index.md b/source/know/concept/dirac-notation/index.md
index 2830a33..bbf31e5 100644
--- a/source/know/concept/dirac-notation/index.md
+++ b/source/know/concept/dirac-notation/index.md
@@ -27,7 +27,8 @@ that maps kets $$\ket{V}$$ to other kets $$\ket{V'}$$.
Recall that by definition the Hilbert inner product must satisfy:
$$\begin{aligned}
- \inprod{V}{W} = \inprod{W}{V}^*
+ \inprod{V}{W}
+ = \inprod{W}{V}^*
\end{aligned}$$
So far, nothing has been said about the actual representation of bras or kets.
@@ -36,12 +37,14 @@ the corresponding bras are given by the kets' adjoints,
i.e. their transpose conjugates:
$$\begin{aligned}
- \ket{V} =
+ \ket{V}
+ =
\begin{bmatrix}
v_1 \\ \vdots \\ v_N
\end{bmatrix}
- \quad \implies \quad
- \bra{V} =
+ \qquad \implies \qquad
+ \bra{V}
+ =
\begin{bmatrix}
v_1^* & \cdots & v_N^*
\end{bmatrix}
@@ -88,8 +91,9 @@ then the bras are *functionals* $$F[u(x)]$$
that take an arbitrary function $$u(x)$$ as an argument and return a scalar:
$$\begin{aligned}
- \ket{f} = f(x)
- \quad \implies \quad
+ \ket{f}
+ = f(x)
+ \qquad \implies \qquad
\bra{f}
= F[u(x)]
= \int_a^b f^*(x) \: u(x) \dd{x}
diff --git a/source/know/concept/electromagnetic-wave-equation/index.md b/source/know/concept/electromagnetic-wave-equation/index.md
index a27fe6f..559d943 100644
--- a/source/know/concept/electromagnetic-wave-equation/index.md
+++ b/source/know/concept/electromagnetic-wave-equation/index.md
@@ -1,7 +1,7 @@
---
title: "Electromagnetic wave equation"
sort_title: "Electromagnetic wave equation"
-date: 2021-09-09
+date: 2024-09-08 # Originally 2021-09-09, major rewrite
categories:
- Physics
- Electromagnetism
@@ -9,236 +9,281 @@ categories:
layout: "concept"
---
-The electromagnetic wave equation describes
-the propagation of light through various media.
-Since an electromagnetic (light) wave consists of
+Light, i.e. **electromagnetic waves**, consist of
an [electric field](/know/concept/electric-field/)
and a [magnetic field](/know/concept/magnetic-field/),
-we need [Maxwell's equations](/know/concept/maxwells-equations/)
-in order to derive the wave equation.
+one inducing the other and vice versa.
+The existence and classical behavior of such waves
+can be derived using only [Maxwell's equations](/know/concept/maxwells-equations/),
+as we will demonstrate here.
-
-## Uniform medium
-
-We will use all of Maxwell's equations,
-but we start with Ampère's circuital law for the "free" fields $$\vb{H}$$ and $$\vb{D}$$,
-in the absence of a free current $$\vb{J}_\mathrm{free} = 0$$:
-
-$$\begin{aligned}
- \nabla \cross \vb{H}
- = \pdv{\vb{D}}{t}
-\end{aligned}$$
-
-We assume that the medium is isotropic, linear,
-and uniform in all of space, such that:
+We start from Faraday's law of induction,
+where we assume that the system consists of materials
+with well-known (linear) relative magnetic permeabilities $$\mu_r(\vb{r})$$,
+such that $$\vb{B} = \mu_0 \mu_r \vb{H}$$:
$$\begin{aligned}
- \vb{D} = \varepsilon_0 \varepsilon_r \vb{E}
- \qquad \quad
- \vb{H} = \frac{1}{\mu_0 \mu_r} \vb{B}
+ \nabla \cross \vb{E}
+ = - \pdv{\vb{B}}{t}
+ = - \mu_0 \mu_r \pdv{\vb{H}}{t}
\end{aligned}$$
-Which, upon insertion into Ampère's law,
-yields an equation relating $$\vb{B}$$ and $$\vb{E}$$.
-This may seem to contradict Ampère's "total" law,
-but keep in mind that $$\vb{J}_\mathrm{bound} \neq 0$$ here:
+We move $$\mu_r(\vb{r})$$ to the other side,
+take the curl, and insert Ampère's circuital law:
$$\begin{aligned}
- \nabla \cross \vb{B}
- = \mu_0 \mu_r \varepsilon_0 \varepsilon_r \pdv{\vb{E}}{t}
+ \nabla \cross \bigg( \frac{1}{\mu_r} \nabla \cross \vb{E} \bigg)
+ &= - \mu_0 \pdv{}{t} \big( \nabla \cross \vb{H} \big)
+ \\
+ &= - \mu_0 \bigg( \pdv{\vb{J}_\mathrm{free}}{t} + \pdvn{2}{\vb{D}}{t} \bigg)
\end{aligned}$$
-Now we take the curl, rearrange,
-and substitute $$\nabla \cross \vb{E}$$ according to Faraday's law:
+For simplicity, we only consider insulating materials,
+since light propagation in conductors is a complex beast.
+We thus assume that there are no free currents $$\vb{J}_\mathrm{free} = 0$$, leaving:
$$\begin{aligned}
- \nabla \cross (\nabla \cross \vb{B})
- = \mu_0 \mu_r \varepsilon_0 \varepsilon_r \pdv{}{t}(\nabla \cross \vb{E})
- = - \mu_0 \mu_r \varepsilon_0 \varepsilon_r \pdvn{2}{\vb{B}}{t}
+ \nabla \cross \bigg( \frac{1}{\mu_r} \nabla \cross \vb{E} \bigg)
+ &= - \mu_0 \pdvn{2}{\vb{D}}{t}
\end{aligned}$$
-Using a vector identity, we rewrite the leftmost expression,
-which can then be reduced thanks to Gauss' law for magnetism $$\nabla \cdot \vb{B} = 0$$:
+Having $$\vb{E}$$ and $$\vb{D}$$ in the same equation is not ideal,
+so we should make a choice:
+do we restrict ourselves to linear media
+(so $$\vb{D} = \varepsilon_0 \varepsilon_r \vb{E}$$),
+or do we allow materials with more complicated responses
+(so $$\vb{D} = \varepsilon_0 \vb{E} + \vb{P}$$, with $$\vb{P}$$ unspecified)?
+The former is usually sufficient:
$$\begin{aligned}
- - \mu_0 \mu_r \varepsilon_0 \varepsilon_r \pdvn{2}{\vb{B}}{t}
- &= \nabla (\nabla \cdot \vb{B}) - \nabla^2 \vb{B}
- = - \nabla^2 \vb{B}
+ \boxed{
+ \nabla \cross \bigg( \frac{1}{\mu_r} \nabla \cross \vb{E} \bigg)
+ = - \mu_0 \varepsilon_0 \varepsilon_r \pdvn{2}{\vb{E}}{t}
+ }
\end{aligned}$$
-This describes $$\vb{B}$$.
-Next, we repeat the process for $$\vb{E}$$:
-taking the curl of Faraday's law yields:
+This is the general linear form of the **electromagnetic wave equation**,
+where $$\mu_r$$ and $$\varepsilon_r$$
+both depend on $$\vb{r}$$ in order to describe the structure of the system.
+We can obtain a similar equation for $$\vb{H}$$,
+by starting from Ampère's law under the same assumptions:
$$\begin{aligned}
- \nabla \cross (\nabla \cross \vb{E})
- = - \pdv{}{t}(\nabla \cross \vb{B})
- = - \mu_0 \mu_r \varepsilon_0 \varepsilon_r \pdvn{2}{\vb{E}}{t}
+ \nabla \cross \vb{H}
+ = \pdv{\vb{D}}{t}
+ = \varepsilon_0 \varepsilon_r \pdv{\vb{E}}{t}
\end{aligned}$$
-Which can be rewritten using same vector identity as before,
-and then reduced by assuming that there is no net charge density $$\rho = 0$$
-in Gauss' law, such that $$\nabla \cdot \vb{E} = 0$$:
+Taking the curl and substituting Faraday's law on the right yields:
$$\begin{aligned}
- - \mu_0 \mu_r \varepsilon_0 \varepsilon_r \pdvn{2}{\vb{E}}{t}
- &= \nabla (\nabla \cdot \vb{E}) - \nabla^2 \vb{E}
- = - \nabla^2 \vb{E}
+ \nabla \cross \bigg( \frac{1}{\varepsilon_r} \nabla \cross \vb{H} \bigg)
+ &= \varepsilon_0 \pdv{}{t} \big( \nabla \cross \vb{E} \big)
+ = - \varepsilon_0 \pdvn{2}{\vb{B}}{t}
\end{aligned}$$
-We thus arrive at the following two (implicitly coupled)
-wave equations for $$\vb{E}$$ and $$\vb{B}$$,
-where we have defined the phase velocity $$v \equiv 1 / \sqrt{\mu_0 \mu_r \varepsilon_0 \varepsilon_r}$$:
+And then we insert $$\vb{B} = \mu_0 \mu_r \vb{H}$$ to get the analogous
+electromagnetic wave equation for $$\vb{H}$$:
$$\begin{aligned}
\boxed{
- \pdvn{2}{\vb{E}}{t} - \frac{1}{v^2} \nabla^2 \vb{E}
- = 0
- }
- \qquad \quad
- \boxed{
- \pdvn{2}{\vb{B}}{t} - \frac{1}{v^2} \nabla^2 \vb{B}
- = 0
+ \nabla \cross \bigg( \frac{1}{\varepsilon_r} \nabla \cross \vb{H} \bigg)
+ = - \mu_0 \varepsilon_0 \mu_r \pdvn{2}{\vb{H}}{t}
}
\end{aligned}$$
-Traditionally, it is said that the solutions are as follows,
-where the wavenumber $$|\vb{k}| = \omega / v$$:
-
-$$\begin{aligned}
- \vb{E}(\vb{r}, t)
- &= \vb{E}_0 \exp(i \vb{k} \cdot \vb{r} - i \omega t)
- \\
- \vb{B}(\vb{r}, t)
- &= \vb{B}_0 \exp(i \vb{k} \cdot \vb{r} - i \omega t)
-\end{aligned}$$
-
-In fact, thanks to linearity, these **plane waves** can be treated as
-terms in a Fourier series, meaning that virtually
-*any* function $$f(\vb{k} \cdot \vb{r} - \omega t)$$ is a valid solution.
+This is equivalent to the problem for $$\vb{E}$$,
+since they are coupled by Maxwell's equations.
+By solving either, subject to Gauss's laws
+$$\nabla \cdot (\varepsilon_r \vb{E}) = 0$$ and $$\nabla \cdot (\mu_r \vb{H}) = 0$$,
+the behavior of light in a given system can be deduced.
+Note that Gauss's laws enforce that the wave's fields are transverse,
+i.e. they must be perpendicular to the propagation direction.
-Keep in mind that in reality $$\vb{E}$$ and $$\vb{B}$$ are real,
-so although it is mathematically convenient to use plane waves,
-in the end you will need to take the real part.
-## Non-uniform medium
+## Homogeneous linear media
-A useful generalization is to allow spatial change
-in the relative permittivity $$\varepsilon_r(\vb{r})$$
-and the relative permeability $$\mu_r(\vb{r})$$.
-We still assume that the medium is linear and isotropic, so:
+In the special case where the medium is completely uniform,
+$$\mu_r$$ and $$\varepsilon_r$$ no longer depend on $$\vb{r}$$,
+so they can be moved to the other side:
$$\begin{aligned}
- \vb{D}
- = \varepsilon_0 \varepsilon_r(\vb{r}) \vb{E}
- \qquad \quad
- \vb{B}
- = \mu_0 \mu_r(\vb{r}) \vb{H}
+ \nabla \cross \big( \nabla \cross \vb{E} \big)
+ &= - \mu_0 \mu_r \varepsilon_0 \varepsilon_r \pdvn{2}{\vb{E}}{t}
+ \\
+ \nabla \cross \big( \nabla \cross \vb{H} \big)
+ &= - \mu_0 \mu_r \varepsilon_0 \varepsilon_r \pdvn{2}{\vb{H}}{t}
\end{aligned}$$
-Inserting these expressions into Faraday's and Ampère's laws
-respectively yields:
+This can be rewritten using the vector identity
+$$\nabla \cross (\nabla \cross \vb{V}) = \nabla (\nabla \cdot \vb{V}) - \nabla^2 \vb{V}$$:
$$\begin{aligned}
- \nabla \cross \vb{E}
- = - \mu_0 \mu_r(\vb{r}) \pdv{\vb{H}}{t}
- \qquad \quad
- \nabla \cross \vb{H}
- = \varepsilon_0 \varepsilon_r(\vb{r}) \pdv{\vb{E}}{t}
+ \nabla (\nabla \cdot \vb{E}) - \nabla^2 \vb{E}
+ &= - \mu_0 \mu_r \varepsilon_0 \varepsilon_r \pdvn{2}{\vb{E}}{t}
+ \\
+ \nabla (\nabla \cdot \vb{H}) - \nabla^2 \vb{H}
+ &= - \mu_0 \mu_r \varepsilon_0 \varepsilon_r \pdvn{2}{\vb{H}}{t}
\end{aligned}$$
-We then divide Ampère's law by $$\varepsilon_r(\vb{r})$$,
-take the curl, and substitute Faraday's law, giving:
+Which can be reduced using Gauss's laws
+$$\nabla \cdot \vb{E} = 0$$ and $$\nabla \cdot \vb{H} = 0$$
+thanks to the fact that $$\varepsilon_r$$ and $$\mu_r$$ are constants in this case.
+We therefore arrive at:
$$\begin{aligned}
- \nabla \cross \Big( \frac{1}{\varepsilon_r} \nabla \cross \vb{H} \Big)
- = \varepsilon_0 \pdv{}{t}(\nabla \cross \vb{E})
- = - \mu_0 \mu_r \varepsilon_0 \pdvn{2}{\vb{H}}{t}
+ \boxed{
+ \nabla^2 \vb{E} - \frac{n^2}{c^2} \pdvn{2}{\vb{E}}{t}
+ = 0
+ }
\end{aligned}$$
-Next, we exploit linearity by decomposing $$\vb{H}$$ and $$\vb{E}$$
-into Fourier series, with terms given by:
-
$$\begin{aligned}
- \vb{H}(\vb{r}, t)
- = \vb{H}(\vb{r}) \exp(- i \omega t)
- \qquad \quad
- \vb{E}(\vb{r}, t)
- = \vb{E}(\vb{r}) \exp(- i \omega t)
+ \boxed{
+ \nabla^2 \vb{H} - \frac{n^2}{c^2} \pdvn{2}{\vb{H}}{t}
+ = 0
+ }
\end{aligned}$$
-By inserting this ansatz into the equation,
-we can remove the explicit time dependence:
+Where $$c = 1 / \sqrt{\mu_0 \varepsilon_0}$$ is the speed of light in a vacuum,
+and $$n = \sqrt{\mu_0 \varepsilon_0}$$ is the refractive index of the medium.
+Note that most authors write the magnetic equation with $$\vb{B}$$ instead of $$\vb{H}$$;
+both are correct thanks to linearity.
+
+In a vacuum, where $$n = 1$$, these equations are sometimes written as
+$$\square \vb{E} = 0$$ and $$\square \vb{H} = 0$$,
+where $$\square$$ is the **d'Alembert operator**, defined as follows:
$$\begin{aligned}
- \nabla \cross \Big( \frac{1}{\varepsilon_r} \nabla \cross \vb{H} \Big) \exp(- i \omega t)
- = \mu_0 \varepsilon_0 \omega^2 \mu_r \vb{H} \exp(- i \omega t)
+ \boxed{
+ \square
+ \equiv \nabla^2 - \frac{1}{c^2} \pdvn{2}{}{t}
+ }
\end{aligned}$$
-Dividing out $$\exp(- i \omega t)$$,
-we arrive at an eigenvalue problem for $$\omega^2$$,
-with $$c = 1 / \sqrt{\mu_0 \varepsilon_0}$$:
+Note that some authors define it with the opposite sign.
+In any case, the d'Alembert operator is important for special relativity.
+
+The solution to the homogeneous electromagnetic wave equation
+are traditionally said to be the so-called **plane waves** given by:
$$\begin{aligned}
- \boxed{
- \nabla \cross \Big( \frac{1}{\varepsilon_r(\vb{r})} \nabla \cross \vb{H