diff options
author | Prefetch | 2021-02-20 13:46:18 +0100 |
---|---|---|
committer | Prefetch | 2021-02-20 13:46:18 +0100 |
commit | e71c14aa725d71a2ea7310c69b3d11a8bc12c0b0 (patch) | |
tree | 987d344c8758d3250cf5c997891b8e645dd00594 /latex/know/concept/blochs-theorem/source.md | |
parent | f7d88d0ae1c5544cc517ae6b25970f82d82b1496 (diff) |
Add latex/ directory + fix MathJax renderer
Diffstat (limited to 'latex/know/concept/blochs-theorem/source.md')
-rw-r--r-- | latex/know/concept/blochs-theorem/source.md | 81 |
1 files changed, 81 insertions, 0 deletions
diff --git a/latex/know/concept/blochs-theorem/source.md b/latex/know/concept/blochs-theorem/source.md new file mode 100644 index 0000000..2307d2e --- /dev/null +++ b/latex/know/concept/blochs-theorem/source.md @@ -0,0 +1,81 @@ +% Bloch's theorem + + +# Bloch's theorem +In quantum mechanics, *Bloch's theorem* states that, +given a potential $V(\vec{r})$ which is periodic on a lattice, +i.e. $V(\vec{r}) = V(\vec{r} + \vec{a})$ +for a primitive lattice vector $\vec{a}$, +then it follows that the solutions $\psi(\vec{r})$ +to the time-independent Schrödinger equation +take the following form, +where the function $u(\vec{r})$ is periodic on the same lattice, +i.e. $u(\vec{r}) = u(\vec{r} + \vec{a})$: + +$$ +\begin{aligned} + \boxed{ + \psi(\vec{r}) = u(\vec{r}) e^{i \vec{k} \cdot \vec{r}} + } +\end{aligned} +$$ + +In other words, in a periodic potential, +the solutions are simply plane waves with a periodic modulation, +known as *Bloch functions* or *Bloch states*. + +This is suprisingly easy to prove: +if the Hamiltonian $\hat{H}$ is lattice-periodic, +then it will commute with the unitary translation operator $\hat{T}(\vec{a})$, +i.e. $\comm{\hat{H}}{\hat{T}(\vec{a})} = 0$. +Therefore $\hat{H}$ and $\hat{T}(\vec{a})$ must share eigenstates $\psi(\vec{r})$: + +$$ +\begin{aligned} + \hat{H} \:\psi(\vec{r}) = E \:\psi(\vec{r}) + \qquad + \hat{T}(\vec{a}) \:\psi(\vec{r}) = \tau \:\psi(\vec{r}) +\end{aligned} +$$ + +Since $\hat{T}$ is unitary, +its eigenvalues $\tau$ must have the form $e^{i \theta}$, with $\theta$ real. +Therefore a translation by $\vec{a}$ causes a phase shift, +for some vector $\vec{k}$: + +$$ +\begin{aligned} + \psi(\vec{r} + \vec{a}) + = \hat{T}(\vec{a}) \:\psi(\vec{r}) + = e^{i \theta} \:\psi(\vec{r}) + = e^{i \vec{k} \cdot \vec{a}} \:\psi(\vec{r}) +\end{aligned} +$$ + +Let us now define the following function, +keeping our arbitrary choice of $\vec{k}$: + +$$ +\begin{aligned} + u(\vec{r}) + = e^{- i \vec{k} \cdot \vec{r}} \:\psi(\vec{r}) +\end{aligned} +$$ + +As it turns out, this function is guaranteed to be lattice-periodic for any $\vec{k}$: + +$$ +\begin{aligned} + u(\vec{r} + \vec{a}) + &= e^{- i \vec{k} \cdot (\vec{r} + \vec{a})} \:\psi(\vec{r} + \vec{a}) + \\ + &= e^{- i \vec{k} \cdot \vec{r}} e^{- i \vec{k} \cdot \vec{a}} e^{i \vec{k} \cdot \vec{a}} \:\psi(\vec{r}) + \\ + &= e^{- i \vec{k} \cdot \vec{r}} \:\psi(\vec{r}) + \\ + &= u(\vec{r}) +\end{aligned} +$$ + +Then Bloch's theorem follows from +isolating the definition of $u(\vec{r})$ for $\psi(\vec{r})$. |