summaryrefslogtreecommitdiff
path: root/latex/know
diff options
context:
space:
mode:
authorPrefetch2021-02-20 13:46:18 +0100
committerPrefetch2021-02-20 13:46:18 +0100
commite71c14aa725d71a2ea7310c69b3d11a8bc12c0b0 (patch)
tree987d344c8758d3250cf5c997891b8e645dd00594 /latex/know
parentf7d88d0ae1c5544cc517ae6b25970f82d82b1496 (diff)
Add latex/ directory + fix MathJax renderer
Diffstat (limited to 'latex/know')
-rw-r--r--latex/know/concept/blochs-theorem/source.md81
1 files changed, 81 insertions, 0 deletions
diff --git a/latex/know/concept/blochs-theorem/source.md b/latex/know/concept/blochs-theorem/source.md
new file mode 100644
index 0000000..2307d2e
--- /dev/null
+++ b/latex/know/concept/blochs-theorem/source.md
@@ -0,0 +1,81 @@
+% Bloch's theorem
+
+
+# Bloch's theorem
+In quantum mechanics, *Bloch's theorem* states that,
+given a potential $V(\vec{r})$ which is periodic on a lattice,
+i.e. $V(\vec{r}) = V(\vec{r} + \vec{a})$
+for a primitive lattice vector $\vec{a}$,
+then it follows that the solutions $\psi(\vec{r})$
+to the time-independent Schrödinger equation
+take the following form,
+where the function $u(\vec{r})$ is periodic on the same lattice,
+i.e. $u(\vec{r}) = u(\vec{r} + \vec{a})$:
+
+$$
+\begin{aligned}
+ \boxed{
+ \psi(\vec{r}) = u(\vec{r}) e^{i \vec{k} \cdot \vec{r}}
+ }
+\end{aligned}
+$$
+
+In other words, in a periodic potential,
+the solutions are simply plane waves with a periodic modulation,
+known as *Bloch functions* or *Bloch states*.
+
+This is suprisingly easy to prove:
+if the Hamiltonian $\hat{H}$ is lattice-periodic,
+then it will commute with the unitary translation operator $\hat{T}(\vec{a})$,
+i.e. $\comm{\hat{H}}{\hat{T}(\vec{a})} = 0$.
+Therefore $\hat{H}$ and $\hat{T}(\vec{a})$ must share eigenstates $\psi(\vec{r})$:
+
+$$
+\begin{aligned}
+ \hat{H} \:\psi(\vec{r}) = E \:\psi(\vec{r})
+ \qquad
+ \hat{T}(\vec{a}) \:\psi(\vec{r}) = \tau \:\psi(\vec{r})
+\end{aligned}
+$$
+
+Since $\hat{T}$ is unitary,
+its eigenvalues $\tau$ must have the form $e^{i \theta}$, with $\theta$ real.
+Therefore a translation by $\vec{a}$ causes a phase shift,
+for some vector $\vec{k}$:
+
+$$
+\begin{aligned}
+ \psi(\vec{r} + \vec{a})
+ = \hat{T}(\vec{a}) \:\psi(\vec{r})
+ = e^{i \theta} \:\psi(\vec{r})
+ = e^{i \vec{k} \cdot \vec{a}} \:\psi(\vec{r})
+\end{aligned}
+$$
+
+Let us now define the following function,
+keeping our arbitrary choice of $\vec{k}$:
+
+$$
+\begin{aligned}
+ u(\vec{r})
+ = e^{- i \vec{k} \cdot \vec{r}} \:\psi(\vec{r})
+\end{aligned}
+$$
+
+As it turns out, this function is guaranteed to be lattice-periodic for any $\vec{k}$:
+
+$$
+\begin{aligned}
+ u(\vec{r} + \vec{a})
+ &= e^{- i \vec{k} \cdot (\vec{r} + \vec{a})} \:\psi(\vec{r} + \vec{a})
+ \\
+ &= e^{- i \vec{k} \cdot \vec{r}} e^{- i \vec{k} \cdot \vec{a}} e^{i \vec{k} \cdot \vec{a}} \:\psi(\vec{r})
+ \\
+ &= e^{- i \vec{k} \cdot \vec{r}} \:\psi(\vec{r})
+ \\
+ &= u(\vec{r})
+\end{aligned}
+$$
+
+Then Bloch's theorem follows from
+isolating the definition of $u(\vec{r})$ for $\psi(\vec{r})$.